K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2021

Ta có \(S=\dfrac{abc}{4R}=pr=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(\Rightarrow S^2=\dfrac{abcpr}{4R}=p\left(p-a\right)\left(p-b\right)\left(p-c\right)\)

\(\Rightarrow\dfrac{2r}{R}=\dfrac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{abc}\)

Theo giả thiết \(\dfrac{a^3+b^3+c^3}{abc}+\dfrac{2r}{R}=4\)

\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{abc}+\dfrac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{abc}=4\)

\(\Leftrightarrow a^3+b^3+c^3+\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)=4abc\)

\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2=6abc\left(1\right)\)

Áp dụng BĐT AM-GM:

\(a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\ge6abc\)

\(\Rightarrow\left(1\right)\) đúng

Đẳng thức xảy ra khi \(a=b=c\)

\(\Leftrightarrow\Delta ABC\) đều

NV
30 tháng 4 2021

\(\dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}\Rightarrow tan\left(\dfrac{A}{2}+\dfrac{B}{2}\right)=tan\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)\)

\(\Rightarrow\dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{1-tan\dfrac{A}{2}tan\dfrac{B}{2}}=cot\dfrac{C}{2}=\dfrac{1}{tan\dfrac{C}{2}}\)

\(\Rightarrow tan\dfrac{A}{2}.tan\dfrac{C}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}=1-tan\dfrac{A}{2}tan\dfrac{B}{2}\)

\(\Rightarrow tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}=1\)

Ta có:

\(tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\ge\sqrt{3\left(tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}\right)}=\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=C\) hay tam giác ABC đều

27 tháng 2 2021

B

27 tháng 2 2021

Đáp án B nha

19 tháng 3 2021

Tham khảo:

Câu hỏi của Nguyễn Ngọc - Hoc24

29 tháng 1 2021

G là trọng tâm à bạn?

10 tháng 5 2021

Ta có: A = \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}=cos\dfrac{B+C}{2}+2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}\)

\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}-cos^2\dfrac{B+C}{4}+sin^2\dfrac{B+C}{4}=0\)\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}+2sin^2\dfrac{B+C}{4}-1=0\)

Δ' = \(cos^2\dfrac{B-C}{4}-2\left(A-1\right)\ge0\)

\(\Rightarrow A-1\le\dfrac{1}{2}\Leftrightarrow A\le\dfrac{3}{2}\)

NV
21 tháng 2 2021

\(\dfrac{b^2-a^2}{2c}=b.\dfrac{\left(b^2+c^2-a^2\right)}{2bc}-a.\dfrac{\left(a^2+c^2-b^2\right)}{2ac}\)

\(\Leftrightarrow\dfrac{b^2-a^2}{2c}=\dfrac{b^2+c^2-a^2}{2c}-\dfrac{a^2+c^2-b^2}{2c}\)

\(\Leftrightarrow b^2-a^2=\left(b^2+c^2-a^2\right)-\left(a^2+c^2-b^2\right)\)

\(\Leftrightarrow3b^2=3a^2\Leftrightarrow a=b\)

Hay tam giác cân tại C