Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2 tam giác = nhau theo trường hợp cạnh - cạnh - cạnh
b) Vì tam giác AMB= A'M'B' (c/m trên)
=> góc AMB= góc A'M'B'
=> góc AMC= góc A'M'C' ( cùng kề bù vs 2 góc = nhau của tam giác)
Tự hiểu nha bạn ^^
a) Ta có:
AB = A'B' => \(\frac{1}{2}\)AB = \(\frac{1}{2}\)A'B' <=> MB = M'B'
Xét tg AMB và tg A'M'B' có:
+ MB = M'B' ( c/m trên )
+ AB = A'B' ( do tg ABC = tg A'B'C' )
+ góc B = góc B' ( do tg ABC = tg A'B'C' )
Suy ra: .....
b) Vì tg AMB = tg A'M'B' ( c/m a)) => góc AMB = góc A'M'B'
=> 180 độ - góc AMB = 180 độ - góc A'M'B'
<=> Góc AMC = góc A'M'C' => ĐPCM
k nha!
a, Xét \(\Delta\)ABC và \(\Delta\)A'B'C', có
\(\Delta\)ABC = \(\Delta\)A'B'C' (gt)
-> AB = A'B'
AC = A'C'
BC = B'C'
=> \(\Delta\)ABC = \(\Delta\)A'B'C' (c.c.c)
=> AH = A'H' (2 cạnh tương ứng)
Chúc bạn học tốt
`#3107.101107`
`a,`
Xét $\triangle ABH$ và $\triangle ACH$:
`AB = AC` $(\triangle ABC$cân tại A`)`
\(\widehat{B}=\widehat{C}\) $(\triangle ABC$cân tại A`)`
`HB = HC ( H` là trung điểm của BC`)`
$=> \triangle ABH = \triangle ACH (c - g - c)$
Vì $\triangle ABH = \triangle ACH$
`=>`\(\widehat{AHB}=\widehat{AHC}\left(\text{2 góc tương ứng}\right)\)
Mà `2` góc này nằm ở vị trí kề bù
`=>` \(\widehat{AHB}+\widehat{AHC}=180^0\)
`=>` \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\) `=> AH \bot BC`
`b,`
Vì $\triangle ABH = \triangle ACH (a)$
`=>`\(\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\)
Xét $\triangle AHM$ và $\triangle AHN$:
AH chung
\(\widehat{MAH}=\widehat{NAH}\left(CMT\right)\)
\(\widehat{AMH}=\widehat{ANH}\left(=90^0\right)\)
$=> \triangle AHM = \triangle AHN (ch - gn)$
`c,`
Xét $\triangle HMB$ và $\triangle HNC$:
\(\widehat{HMB}=\widehat{HNC}\left(=90^0\right)\)
`HB = HC` `(`gt`)`
\(\widehat{HBM}=\widehat{HCN}\) $(\triangle ABC$ cân tại A`)`
$=> \triangle HMB = \triangle HNC (ch - gn)$
`=>`\(\widehat{BHM}=\widehat{CHN}\left(2\text{ góc tương ứng}\right)\) `(1)`
Vì \(\left\{{}\begin{matrix}\widehat{MHB}+\widehat{KHB}=\widehat{MHK}\\\widehat{NHC}+\widehat{IHC}=\widehat{NHI}\end{matrix}\right.\)
Mà \(\widehat{MHK}=\widehat{NHI}\left(\text{đối đỉnh}\right)\) `(2)`
Từ `(1)` và `(2)` `=>` \(\widehat{KHB}=\widehat{IHC}\)
Xét $\triangle KHB$ và $\triangle IHC$:
\(\widehat{KBH}=\widehat{ICH}\left(\widehat{ABC}=\widehat{ACB}\right)\)
`HB = HC`
\(\widehat{KHB}=\widehat{IHC}\)
$=> \triangle KHB = \triangle IHC (g - c - g)$
`=> BK = CI` `(2` cạnh tương ứng`)`
Ta có:
`AK = AB + BK`
`AI = AC + CI`
Mà `AB = AC; BK = CI`
$=> AK = AI => \triangle AIK$ cân tại A.