Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a.Ta có xy//BC,MD//AB��//��,��//��
→AD//BM,AB//DM→ˆBMA=ˆMAD,ˆBAM=ˆAMD→��//��,��//��→���^=���^,���^=���^
Mà ΔABM,ΔMDAΔ���,Δ��� chung cạnh AM��
→ΔABM=ΔMDA(g.c.g)→Δ���=Δ���(�.�.�)
→AD=BM,MD=AB→��=��,��=��
Tương tự chứng minh được AE=MC,ME=AC��=��,��=��
→DE=DA+AE=BM+MC=BC→��=��+��=��+��=��
→ΔABC=ΔMDE(c.c.c)→Δ���=Δ���(�.�.�)
b.Gọi AM∩BD=I��∩��=�
→ˆIAD=ˆIMB,ˆIDA=ˆIBM(AD//BM)→���^=���^,���^=���^(��//��)
Mà AD=BM��=��
→ΔIAD=ΔIMB(g.c.g)→Δ���=Δ���(�.�.�)
→IA=IM,IB=ID→��=��,��=��
Lại có AE//CM→ˆEAI=ˆIMC��//��→���^=���^
Kết hợp AE=CM��=��
→ΔIAE=ΔIMC(c.g.c)→Δ���=Δ���(�.�.�)
→ˆAIE=ˆMIC→���^=���^
→ˆEIC=ˆAIE+ˆAIC=ˆMIC+ˆAIC=ˆAIM=180o→���^=���^+���^=���^+���^=���^=180�
→E,I,C→�,�,� thẳng hàng
→CE,AM,BD→��,��,�� đồng quy
Tứ giác ADMB có: AB//MD, AD//MB
ADMB là hình bình hành AB=MD và ˆDAB=ˆDMBDAB^=DMB^
Tứ giác ACME có: AE//MC, AC//ME
ACME là hình bình hành \Rightarrow AC=ME
Vì xy//BC nên ˆDAC=ˆACBDAC^=ACB^
mà ˆACB=ˆEMBACB^=EMB^ nên ˆDAC=ˆEMBDAC^=EMB^
Ta có: ˆDAB=ˆDMBDAB^=DMB^
ˆDAB−ˆDAC=ˆDMB−ˆEMBDAB^−DAC^=DMB^−EMB^
hay ˆBAC=ˆDMEBAC^=DME^
Tam giác ABC=MDE (c.g.c)
b: Xét tứ giác AEMC có
AE//MC
AC//ME
Do đó: AEMC là hình bình hành
Suy ra: Hai đường chéo AM và CE cắt nhau tại trung điểm của mỗi đường(1)
Xét tứ giác ABMD có
AD//BM
AB//MD
Do đó:ABMD là hình bình hành
Suy ra: Hai đường chéo AM và BD cắt nhau tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AM,BD và CE đồng quy
Xét tứ giác AEMC có
AE//MC
AC//EM
Do đó: AEMC là hình bình hành
Suy ra: Hai đường chéo AM và EC cắt nhau tại trung điểm của mỗi đường(1)
Xét tứ giác ABMD có
AD//BM
AB//MD
Do đó: ABMD là hình bình hành
Suy ra: Hai đường chéo AM và BD cắt nhau tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AM,BD,CE đồng quy
Tứ giác ADMB có: AB//MD, AD//MB
ADMB là hình bình hành AB=MD và ˆDAB=ˆDMBDAB^=DMB^
Tứ giác ACME có: AE//MC, AC//ME
ACME là hình bình hành \Rightarrow AC=ME
Vì xy//BC nên ˆDAC=ˆACBDAC^=ACB^
mà ˆACB=ˆEMBACB^=EMB^ nên ˆDAC=ˆEMBDAC^=EMB^
Ta có: ˆDAB=ˆDMBDAB^=DMB^
ˆDAB−ˆDAC=ˆDMB−ˆEMBDAB^−DAC^=DMB^−EMB^
hay ˆBAC=ˆDMEBAC^=DME^
Tam giác ABC=MDE (c.g.c)
Hình tự vẽ nhá :)
a) Có AD // BM (gt), DM // AB (gt) => DA = BM ; DM = AB ( t/c đoạn chắn ) (1)
AE // CM (gt); AC // EM (gt) => AE = CM ; AC = EM ( t/c đoạn chắn ) (2)
Từ (1) và (2) => AD + AE = BM + CM
=> DE = BC
Xét tam giác ABC và tam giác MDE có :
AB = DM ( cmt )
BC = DE ( cmt )
AC = EM ( cmt )
=> \(\Delta ABC=\Delta MDE\) ( c.c.c )
xem trên mạng nhé
a) Có AD // BM (gt), DM // AB (gt) => DA = BM; DM = AB ( tính chất đoạn chắn) (1)
AE // CM (gt); AC // EM (gt) => AE = CM; AC = EM ( tính chất đoạn chắn) (2)
Từ (1) và (2) => AD + AE = BM + CM
=> DE = BC
Xét ΔABCΔABC và ΔMDEΔMDE có:
AB = DM (cmt)
BC = DE (cmt)
AC = EM (cmt)
Do đó, ΔABC=ΔΔABC=ΔMDE (c.c.c)