K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

xem trên mạng nhé 

a) Có AD // BM (gt), DM // AB (gt) => DA = BM; DM = AB ( tính chất đoạn chắn) (1)

AE // CM (gt); AC // EM (gt) => AE = CM; AC = EM ( tính chất đoạn chắn) (2)

Từ (1) và (2) => AD + AE = BM + CM

=> DE = BC

Xét ΔABCΔABC và ΔMDEΔMDE có:

AB = DM (cmt)

BC = DE (cmt)

AC = EM (cmt)

Do đó, ΔABC=ΔΔABC=ΔMDE (c.c.c)

Giải thích các bước giải:

a.Ta có xy//BC,MD//AB��//��,��//��

→AD//BM,AB//DM→ˆBMA=ˆMAD,ˆBAM=ˆAMD→��//��,��//��→���^=���^,���^=���^

Mà ΔABM,ΔMDAΔ���,Δ��� chung cạnh AM��

→ΔABM=ΔMDA(g.c.g)→Δ���=Δ���(�.�.�)

→AD=BM,MD=AB→��=��,��=��

Tương tự chứng minh được AE=MC,ME=AC��=��,��=��

→DE=DA+AE=BM+MC=BC→��=��+��=��+��=��

→ΔABC=ΔMDE(c.c.c)→Δ���=Δ���(�.�.�)

b.Gọi AM∩BD=I��∩��=�

→ˆIAD=ˆIMB,ˆIDA=ˆIBM(AD//BM)→���^=���^,���^=���^(��//��)

Mà AD=BM��=��

→ΔIAD=ΔIMB(g.c.g)→Δ���=Δ���(�.�.�)

→IA=IM,IB=ID→��=��,��=��

Lại có AE//CM→ˆEAI=ˆIMC��//��→���^=���^

Kết hợp AE=CM��=��

→ΔIAE=ΔIMC(c.g.c)→Δ���=Δ���(�.�.�)

→ˆAIE=ˆMIC→���^=���^

→ˆEIC=ˆAIE+ˆAIC=ˆMIC+ˆAIC=ˆAIM=180o→���^=���^+���^=���^+���^=���^=180�

→E,I,C→�,�,� thẳng hàng

→CE,AM,BD→��,��,�� đồng quy

image  
17 tháng 3 2018

Tứ giác ADMB có: AB//MD, AD//MB
 ADMB là hình bình hành  AB=MD và ˆDAB=ˆDMBDAB^=DMB^
Tứ giác ACME có: AE//MC, AC//ME
 ACME là hình bình hành \Rightarrow AC=ME
Vì xy//BC nên ˆDAC=ˆACBDAC^=ACB^
mà ˆACB=ˆEMBACB^=EMB^ nên ˆDAC=ˆEMBDAC^=EMB^
Ta có: ˆDAB=ˆDMBDAB^=DMB^
 ˆDAB−ˆDAC=ˆDMB−ˆEMBDAB^−DAC^=DMB^−EMB^
hay ˆBAC=ˆDMEBAC^=DME^
Tam giác ABC=MDE (c.g.c)

13 tháng 11 2021

b: Xét tứ giác AEMC có

AE//MC

AC//ME

Do đó: AEMC là hình bình hành

Suy ra: Hai đường chéo AM và CE cắt nhau tại trung điểm của mỗi đường(1)

Xét tứ giác ABMD có

AD//BM

AB//MD

Do đó:ABMD là hình bình hành

Suy ra: Hai đường chéo AM và BD cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AM,BD và CE đồng quy

Xét tứ giác AEMC có

AE//MC

AC//EM

Do đó: AEMC là hình bình hành

Suy ra: Hai đường chéo AM và EC cắt nhau tại trung điểm của mỗi đường(1)

Xét tứ giác ABMD có

AD//BM

AB//MD

Do đó: ABMD là hình bình hành

Suy ra: Hai đường chéo AM và BD cắt nhau tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AM,BD,CE đồng quy

17 tháng 3 2018

Tứ giác ADMB có: AB//MD, AD//MB
 ADMB là hình bình hành  AB=MD và ˆDAB=ˆDMBDAB^=DMB^
Tứ giác ACME có: AE//MC, AC//ME
 ACME là hình bình hành \Rightarrow AC=ME
Vì xy//BC nên ˆDAC=ˆACBDAC^=ACB^
mà ˆACB=ˆEMBACB^=EMB^ nên ˆDAC=ˆEMBDAC^=EMB^
Ta có: ˆDAB=ˆDMBDAB^=DMB^
 ˆDAB−ˆDAC=ˆDMB−ˆEMBDAB^−DAC^=DMB^−EMB^
hay ˆBAC=ˆDMEBAC^=DME^
Tam giác ABC=MDE (c.g.c)

11 tháng 3 2020

Hình tự vẽ nhá :)

a) Có AD // BM (gt), DM // AB (gt) => DA = BM ; DM = AB ( t/c đoạn chắn ) (1)

AE // CM (gt); AC // EM (gt) => AE = CM ; AC = EM ( t/c đoạn chắn ) (2)

Từ (1) và (2) => AD + AE = BM + CM

=> DE = BC

Xét tam giác ABC và tam giác MDE có :

AB = DM ( cmt )

BC = DE ( cmt )

AC = EM ( cmt )

=> \(\Delta ABC=\Delta MDE\) ( c.c.c )