Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PM là đường trung bình của \(\Delta ABC\) nên \(PM=\frac{1}{2}AC\)
Mà PM cũng là ĐTB của \(\Delta OA'C'\) nên \(PM=\frac{1}{2}A'C'\)
Suy ra: \(AC=A'C'\)
Tương tự, ta có: \(PN=\frac{1}{2}BC,PN=\frac{1}{2}B'C'\Rightarrow BC=B'C'\)
\(MN=\frac{1}{2}AB,MN=\frac{1}{2}A'B'\Rightarrow AB=A'B'\)
Vậy \(\Delta ABC=\Delta A'B'C'\left(c.c.c\right)\)
Chúc bạn học tốt.
Xét tam giác MON có: \(\frac{{OA}}{{OM}} = \frac{{OB}}{{ON}} = \frac{2}{3}\) nên \(AB//MN\) (Định lý Thales đảo)
\( \Rightarrow \frac{{AB}}{{MN}} = \frac{2}{3}\) (Hệ quả của định lý Thales)
Chứng minh tương tự ta được \(\frac{{BC}}{{NP}} = \frac{2}{3};\,\,\frac{{AC}}{{MP}} = \frac{2}{3}\)
\( \Rightarrow \frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{AC}}{{MP}}\)
\( \Rightarrow \Delta ABC \backsim\Delta MNP\) (c-c-c)
Áp dụng định lí Ta lét đảo ta có:
\(\dfrac{OD}{OA}=\dfrac{OE}{OB}=\dfrac{OF}{OC}=\dfrac{1}{4}\Rightarrow DE\text{//}AB;EF\text{//}BC;DF\text{//}AC\\ \Rightarrow\dfrac{DE}{AB}=\dfrac{EF}{BC}=\dfrac{DF}{AC}=\dfrac{OD}{OA}=\dfrac{1}{4}\\ \Rightarrow\Delta ABC\sim\Delta DEF\left(c.c.c\right)\)
Tỉ số đồng dạng là: \(\dfrac{DE}{AB}=\dfrac{1}{4}\)
Xét ΔOAB có
M∈OA(gt)
N∈OB(gt)
\(\dfrac{OM}{OA}=\dfrac{ON}{OB}\left(=\dfrac{1}{3}\right)\)
Do đó: MN//AB(Định lí Ta lét đảo)
Xét ΔOAB có
M∈OA(gt)
N∈OB(gt)
MN//AB(cmt)
Do đó: \(\dfrac{MN}{AB}=\dfrac{OM}{OA}\)(Hệ quả của Định lí Ta lét)
⇔\(\dfrac{MN}{AB}=\dfrac{1}{3}\)(1)
Xét ΔAOC có
M∈OA(gt)
P∈OC(gt)
\(\dfrac{OM}{OA}=\dfrac{OP}{OC}\left(=\dfrac{1}{3}\right)\)
Do đó: MP//AC(Định lí Ta lét đảo)
Xét ΔOAC có
M∈OA(gt)
P∈OC(gt)
MP//AC(cmt)
Do đó: \(\dfrac{MP}{AC}=\dfrac{OM}{OA}\)(Hệ quả của Định lí ta lét)
hay \(\dfrac{MP}{AC}=\dfrac{1}{3}\)(2)
Xét ΔOBC có
N∈BO(gt)
P∈CO(gt)
\(\dfrac{ON}{OB}=\dfrac{OP}{OC}\left(=\dfrac{1}{3}\right)\)
Do đó: NP//BC(Định lí Ta lét đảo)
Xét ΔOBC có
N∈BO(gt)
P∈CO(gt)
NP//BC(cmt)
Do đó: \(\dfrac{NP}{BC}=\dfrac{ON}{OB}\)(Hệ quả của Định lí Ta lét)
⇔\(\dfrac{NP}{BC}=\dfrac{1}{3}\)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{MN}{AC}=\dfrac{MP}{AC}=\dfrac{NP}{BC}\)
Xét ΔMNP và ΔABC có
\(\dfrac{MN}{AC}=\dfrac{MP}{AC}=\dfrac{NP}{BC}\)(cmt)
Do đó: ΔMNP∼ΔABC(C-c-c)