Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ O hạ OT vuông góc với MN tại T. Dễ thấy OE là trung trực AC nên OE vuông góc AC.
Mà AC // EM nên OE vuông góc EM. Từ đó ^OEM = ^OCM = ^OTM = 900, suy ra 5 điểm O,E,M,C,T cùng thuộc 1 đường tròn.
Tương tự, ta có 5 điểm O,F,B,N,T cùng thuộc 1 đường tròn. Do đó ^OTE = ^OCE = ^OAE = ^OBF = ^OTF.
Từ đó 3 điểm E,F,T thẳng hàng. Vậy thì ^OCT = ^ OEA = ^OEC = ^OTC.
Suy ra \(\Delta\)OCT cân tại O hay OT = OC. Khi đó MN tiếp xúc với (O) tại T. Theo tính chất 2 tiếp tuyến giao nhau:
BN = TN, CM = TM => BN + CM = MN (đpcm).
b) Gọi đường thẳng CR cắt (O) tại S. Ta sẽ chỉ ra S,B,Q thẳng hàng. Thật vậy:
Ta có: ^AQR + ^ACM = 1800 => ^AQR = 1800 - ^ACM = ^ABC = 1800 - ^ASR => Tứ giác ASRQ nội tiếp
=> ^RSQ = ^RAQ = 1800 - ^AQR - ^ARQ = 1800 - ^ABC - ^ACB = ^BAC = ^CSB.
Từ đó 3 điểm S,B,Q thẳng hàng (Vì SB trùng SQ). Vậy BQ và CR cắt nhau trên đường tròn (O) (đpcm).
Gọi NQ cắt đường tròn (O) tại R khác Q. Ta sẽ chỉ ra 3 điểm M,P,R thẳng hàng.
Thật vậy: Ta có tứ giác ADEC nội tiếp => ^CEN = ^DAC = ^BAC = ^ECN => \(\Delta\)NEC cân tại N
Theo hệ thức lượng đường tròn: NC2 = NQ.NR => NE2 = NQ.NR => \(\Delta\)NQE ~ \(\Delta\)NER (c.g.c)
Suy ra ^REM = ^ERN + ^ENR = ^ENR + ^QEN = ^RQE = ^RCA = ^RAM. Từ đây, tứ giác MREA nội tiếp
=> ^ARM = ^AEM = ^AED = ^ACD = ^ACP = ^ARP. Do đó tia RP trùng tia RM hay M,P,R thẳng hàng.
Điều đó có nghĩa là MP,NQ cắt nhau tại R. Mà R nằm trên (O) nên ta thu được ĐPCM.