K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/cho tam giac ABC can tai A ( goc A<900) cac duong cao AD va BE cat nhau tai H ( D thuoc BC, E thuoc AC) a/CM tu giac DHEC noi tiep duong tron b/chung minh ED=BD va goc HBD=goc HCDc/Goi O la tam cua duong tron ngoai tiep tam giac AHE.CM rang ED la tiep tuyen cua duong tron (O)2/cho ram giac ABC co ba goc nhon noi tiep duong tron (O).Hai duong cao AD va BJ cat nhau tai Ha/CM;tu giac CDHK noi tiep b/ve d.kinh AF .tia AD cat (O)tai E.CM BC//EFc/CMR; AD/HD=BD.CDb/goi I la trung diem cua BC .CMR:...
Đọc tiếp

1/cho tam giac ABC can tai A ( goc A<900) cac duong cao AD va BE cat nhau tai H ( D thuoc BC, E thuoc AC) 

a/CM tu giac DHEC noi tiep duong tron 

b/chung minh ED=BD va goc HBD=goc HCD

c/Goi O la tam cua duong tron ngoai tiep tam giac AHE.CM rang ED la tiep tuyen cua duong tron (O)

2/cho ram giac ABC co ba goc nhon noi tiep duong tron (O).Hai duong cao AD va BJ cat nhau tai H

a/CM;tu giac CDHK noi tiep 

b/ve d.kinh AF .tia AD cat (O)tai E.CM BC//EF

c/CMR; AD/HD=BD.CD

b/goi I la trung diem cua BC .CMR: H,I,F thang hang

3/cho tam giac nhon  ABC noi tiep duong tron tam O,duong cao BHva CK lan luot cat duong tron tai Eva F

a.CMR: tu giac BKHC noi tiep 

b.CM: A la diem chinh giua cu cung EF 

c.CM:OA//EF

d.CM:EF//HK

4/cho tam giac ABC vuong tai A co AB<AC.Ke duong cao AH.Tren HC lay diem D sao cho HD=Hb

a/CMR:tap giac ABD can

b/Tu C ke CF vuong goc voi AD keo dai tai E

Chung minh tu giac AHEC noi tiep duoc trong 1 duong tron .Xac dinh tam O cua duong tron nay

c/CM:AB.ED=HB.CD 

 

0
3 tháng 5 2015

Bài này là đề thi lớp 10 TPHCM năm rồi

12 tháng 4 2020

enytunyt

9 tháng 11 2019
https://i.imgur.com/LuwOJwZ.jpg
9 tháng 11 2019

Nguyễn Ngọc LinhNguyễn Thị Diễm QuỳnhAki TsukiIchigoLê Ngọc KhôiPhạm Lan HươngtthVũ Minh TuấnMinh AnBăng Băng 2k6Lê Thị Thục HiềnNguyễn Lê Phước ThịnhNo choice teenHISINOMA KINIMADOAkai HarumaNguyễn Huy ThắngNguyễn Thanh HằngHồng Phúc NguyễnPhương AnMysterious Person

17 tháng 8 2019

A B C O H D E F P Q M N

a) Dễ có tứ giác BCEF nội tiếp đường tròn (BC). Suy ra ^BPQ = ^AFE = ^ECB = ^BCQ

Vậy tứ giác BPCQ nội tiếp (Quỹ tích cung chứa góc) (đpcm).

b) Có ^BPQ = ^BCQ = ^BFD (cmt) hay ^DPF = ^DFP. Vậy \(\Delta\)DPF cân tại D (đpcm).

c) Dễ thấy NE là tiếp tuyến của (AEF), suy ra ^NEF = ^EAF = ^BDF = 1800 - ^FDN

Suy ra tứ giác DFEN nội tiếp. Khi đó \(\Delta\)MFD ~ \(\Delta\)MNE (g.g). Vậy MF.ME = MD.MN (đpcm).

d) Ta thấy ^FDB = ^EDC (=^BAC); ^DNE = ^DFM (Vì tứ giác DFEN nội tiếp)

Do đó \(\Delta\)DEN ~ \(\Delta\)DMF (g.g). Từ đây DN.DM = DE.DF (1)

Từ câu b, ta có \(\Delta\)DPF cân tại D (DF = DP). Tương tự DE= DQ (2)

Từ (1) và (2) suy ra DN.DM = DP.DQ dẫn đến \(\Delta\)DPM ~ \(\Delta\)DNQ (c.g.c)

Suy ra 4 điểm M,P,Q,N cùng thuộc một đường tròn hay (MPQ) đi qua N cố định (đpcm).