K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

A B C E H O .

a, Xét tam giác ADB và tam giác AEC , ta có 

góc EDC = góc ACE = 90 độ ( góc ACE là góc nội tiếp chắn nửa đường tròn )

góc ABD = góc AEC  ( 2 góc nội tiếp cùng chắn cung AC )

\(\Leftrightarrow\)tam giác ADB đồng dạng với tam giác AEC (g_g)

\(\Rightarrow\)\(\frac{AD}{AB}=\frac{AC}{AE}\)( Các cặp góc tương ứng )

hay AD.AE=AB.AC

3 tháng 6 2018

A B C D O E F Q P R K L M I H S

a) Ta có: Tứ giác ABEC nội tiếp đường tròn (O) => ^ABC=^AEC hay ^ABD=^AEC.

Xét \(\Delta\)ADB và \(\Delta\)ACE: ^ABD=^AEC; ^ADB=^ACE (=900) => \(\Delta\)ADB ~ \(\Delta\)ACE (g.g)

=> \(\frac{AB}{AE}=\frac{AD}{AC}\Rightarrow AB.AC=AD.AE\)(đpcm).

b) Gọi giao điểm của AC và BF là M.

Ta có: AF//BC => ^AFM=^CBM. Mà ^CBM=^FAM (Cùng chắn cung CF) => ^AFM=^FAM

=> \(\Delta\)AMF cân đỉnh M => AM=FM.

Lại có: ^BCM=^FAM (So le trg) => ^BCM=^CBM => \(\Delta\)BMC cân tại M => MB=MC

=> \(\Delta\)AMB=\(\Delta\)FMC (c.g.c) => ^ABM=^FCM => ^ABM+^MBC=^FCM+^CBM => ^ABC=^FCB

=> Tứ giác ABCF là hình thang cân => ^BAF=^CFA.

Dễ thấy: ^DAF=900 (Do AD vuông BC và AF//BC); ^EFA=900

=> ^BAF - ^DAF = ^CFA - ^EFA => ^BAD=^CFE hay ^BAP=^CFQ

Xét \(\Delta\)APB và \(\Delta\)FQC: AB=FC; ^BAP=^CFQ; ^ABP=^FCQ

=> \(\Delta\)APB=\(\Delta\)FQC (g.c.g) => AP=FQ (2 cạnh tương ứng)

Xét tứ giác APQF: ^PAF=^QFA (=900); AP=FQ => Tứ giác APQF là hình chữ nhật

=> ^APQ=900 => PQ vuông góc AD. Mà AD vuông BC nên PQ//BC (Q.h //, vg góc).

c) Gọi giao điểm của FE với BC là R; AD cắt (O) tại L.

Theo chứng minh ở câu a): \(AB.AC=AD.AE\)

\(\Rightarrow AB.AC-AD.AK=AD.AE-AD.AK=AD\left(AE-AK\right)=AD.KE\)(*)

Ta có tứ giác ABEC nội tiếp (O) => \(\Delta\)AKC ~ \(\Delta\)BKE (g.g)

\(\Rightarrow\frac{AK}{BK}=\frac{CK}{KE}\Rightarrow BK.CK=AK.KE\)(1)

Tương tự: \(\Delta\)ADC ~ \(\Delta\)BDL (g.g)

\(\Rightarrow\frac{AD}{BD}=\frac{CD}{DL}\Rightarrow BD.CD=AD.DL\)(2)

Nhân (1) với (2) theo vế, ta được: 

\(BD.CD.BK.CK=AD.AD.KE.AK=\left(KE.AD\right).\left(AK.DL\right)\)(3)

Dễ c/m: 2 tứ giác AFRD và AFEL là hình chữ nhật => AD=FR và AL=FE

=> AL-AD = FE-FR => DL=RE, thay vào (3) suy ra:

\(BD.CD.BK.CK=\left(KE.AD\right).\left(AK.RE\right)\)(4)

Áp dụng hệ quả ĐL Thales: \(\frac{AK}{KE}=\frac{AD}{RE}\)(Do AD//RE) \(\Rightarrow AK.RE=KE.AD\)

Thay vào (4) => \(BD.CD.BK.CK=\left(KE.AD\right).\left(KE.AD\right)=\left(KE.AD\right)^2\)

\(\Leftrightarrow\sqrt{BD.CD.BK.CK}=KE.AD\)(**)

Từ (*) và (**) => \(AB.AC-AD.AK=\sqrt{BD.CD.BK.CK}\)(đpcm).

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

20 tháng 2 2019

Giúp mình câu b,c,d nhanh nhé! Mai mình nộp. Cmon mấy bạn

2 tháng 6 2020

câu này dễ bạn tự làm thư đi

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc BDH+góc BFH=180 độ

=>BDHF nội tiếp

b; góc ACK=1/2*sđ cung AK=90 độ

Xét ΔACK vuông tại C và ΔADB vuông tại D có

góc AKC=góc ABD

=>ΔACK đồng dạng với ΔADB

=>AC/AD=AK/AB

=>AC*AB=AD*AK