Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
DO đó; ΔABD cân tại A
b: Ta có: \(\widehat{MCB}=90^0-\widehat{CDM}\)
\(\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{ADH}=90^0-\widehat{CDM}\)
=>góc MCB=góc ACB
hay CB là phân giác của góc AMC
c: Xét ΔCAQ có
CH là đường phân giác
CH là đường cao
Do đó: ΔCAQ cân tại C
Hình bạn tự vẽ nhé ! ( Bạn thay các chữ cái bằng kí tự nhé !)
a) Do AH vuông góc với BC nên:
Góc AHB= Góc AHC=90 độ
Ta có: Góc BAH= 90 độ- góc B(1)
Góc CAH=90 độ- góc C(2)
Lại dó: Góc B=Góc C( Do tam giác ABC cân tại A)(3)
Kết hợp (1), (2), (3), ta suy ra: Góc BAH= Góc CAH
Xét tam giác ABH và tam giác ACH, có:
Góc BAH= Góc CAH( CM trên)
Chung AH
Góc AHB=Góc AHC( Đều bằng 90 độ)
=> Tam giác ABH=Tam giác ACH( G-c-g)
Khi đó: HB=HC( Cặp cạnh tương ứng)
-------> ĐPCM