K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

a, B,C,D,E cùng thuộc đường tròn đường kính BC

b, BC là đường kính, ED dây không qua tâm => ĐPCM

11 tháng 11 2021

a: Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

Do đó: BEDC là tứ giác nội tiếp

18 tháng 12 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Gọi M là trung điểm của BC.

Để học tốt Toán 9 | Giải bài tập Toán 9

=> ME = MB = MC = MD

Do đó bốn điểm B, E, D, C cùng thuộc đường tròn tâm M. (đpcm)

b) Trong đường tròn tâm M nói trên, ta có DE là dây, BC là đường kính nên DE < BC.

1) Xét tứ giác BCDE có 

\(\widehat{BEC}=\widehat{BDC}\left(=90^0\right)\)

nên BCDE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay B,C,D,E cùng thuộc 1 đường tròn(đpcm)

25 tháng 4 2017

a) Gọi O là trung điểm của BC.

Theo tính chất trung tuyến ứng với cạnh huyền ta có:

EO=12BC;DO=12BC.EO=12BC;DO=12BC.

Suy ra OE=OD=OB=OC(=12BC)OE=OD=OB=OC(=12BC)

Do đó 4 điểm B, C, D, E cùng thuộc đường tròn (O) đường kính BC.

b) Xét đường tròn nói ở câu a), BC là đường kính, DE là một dây không qua tâm, do đó DE<BC.



a: Xét tứ giác ABDE có 

\(\widehat{ADB}=\widehat{AEB}\left(=90^0\right)\)

Do đó: ABDE là tứ giác nội tiếp

hay A,B,D,E cùng thuộc một đường tròn

21 tháng 8 2019

a, Hai tam giác BEC và BDC vuông cùng có cạnh BC là huyền, vì vậy E,D cùng thuộc đường tròn đường kính BC, tức là điểm B,D,E,C cùng thuộc đường tròn đường kính BC

b, Xét tam giác BEC vuông tại E có BC là cạnh huyền . do đó BC>CE. Chứng minh tương tự , suy ra BC>BD

15 tháng 11 2023

a: Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

=>B,E,D,C cùng thuộc 1 đường tròn

b: Vì \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên B,E,D,C cùng thuộc đường tròn đường kính BC

tâm là trung điểm I của BC

bán kính là BC/2

c: Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC(1)

ΔABC cân tại A

mà AI là đường trung tuyến

nên AI\(\perp\)BC(2)

Từ (1),(2) suy ra A,H,I thẳng hàng

ΔABC đều

mà BD,CE là các đường cao

nên BD,CE là các đường trung tuyến

=>D,E lần lượt là trung điểm của AC,AB

Xét ΔABC có

BD,CE là các đường trung tuyến

BD cắt CE tại H

Do đó; H là trọng tâm của ΔABC

mà I là trung điểm của BC

nên \(AH=\dfrac{2}{3}AI\) và \(IH=\dfrac{1}{3}IA\)

ΔAIB vuông tại I

=>\(AB^2=AI^2+IB^2\)

=>\(AI^2=2^2-1^2=3\)

=>\(AI=\sqrt{3}\left(cm\right)\)

\(HI=\dfrac{1}{3}HA=\dfrac{1}{3}\sqrt{3}< \dfrac{1}{3}\cdot3=IB=R\)

=>H nằm trong (I)

\(IA=\sqrt{3}>1=IB=R\)

=>A nằm ngoài (I)

 

15 tháng 11 2023

Cảm ơn . Nhưng mà cho mik hỏi câu d 😅 

Sửa đề: B,D,C,E

BD\(\perp\)AC

=>\(\widehat{BDC}=\widehat{ADB}=90^0\)

CE\(\perp\)AB

=>\(\widehat{AEC}=\widehat{BEC}=90^0\)

Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

Do đó: BEDC là tứ giác nội tiếp

=>B,E,D,C cùng thuộc một đường tròn