Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a> ta có BC vuông góc AI (1) TAM GIÁC AEF CÓ OE=OA=OF (BÁN KÍNH)=> TAM GIÁC AEF VUÔNG TẠI F HAY AE VUÔNG EF MÀ E THUỘC AI => EF VUÔNG VỚI AE (2) TỪ 1,2 => BC//EF(CÙNG VUÔNG AI)
Từng bài 1 thôi bạn!
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K
a) Ta có B,C,F,E cùng thuộc đường tròn (O) => tứ giác BCEF nội tiếp
BCEF là hình thang cân
b) Ta có góc BAE = 90 độ - góc ABC = 90 độ - góc AFC = góc CAF
Suy ra: góc BAE = góc CAF
c) Ta có BH⊥AC
CF⊥AC
Suy ra BH//CF(1)
CH//BF(2)
Từ (1),(2)⇒tứ giác BHCF là hình bình hành
Mà I là trung điểm của BC
Suy ra I là trung điểm của HF hay I,H,F thẳng hàng
bạn ấn vào đúng 0 sẽ ra kết quả mình làm bài này rồi dễ lắm