K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 9 2021

Áp dụng hệ thức lượng trong tam giác vuông ABH với đường cao BM:

\(AH^2=AM.AB\) (1)

Áp dụng hệ thức lượng trong tam giác vuông ACH với đường cao CN:

\(AH^2=AN.AC\) (2)

(1);(2)\(\Rightarrow AM.AB=AN.AC\)

NV
19 tháng 9 2021

undefined

a: ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

=>AM/AC=AN/AB

=>góc AMN=góc ACB

=>góc NMB+góc NCB=180 độ

=>NMBC nội tiếp

b: kẻ đường kính AL

góc ACL=90 độ

AC*AN=AH^2

ΔAIN đồng dạng với ΔACE

=>AI/AC=AN/AE

=>AI*AE=AH^2

góc ADE=90 độ

=>ΔADE vuông tại D

=>AI*AE=AD^2=AH^2

=>AD=AH

12 tháng 3 2022

a, Xét tứ giác ADHE ta có 

^ADH + ^AEH = 1800

mà 2 góc này đối 

Vậy tứ giác ADHE là tứ giác nt 1 đường tròn 

b, Ta có \(AH^2=AD.AB;AH^2=AE.AC\) ( hệ thức lượng ) 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)Xét tam giác ADE và tam giác ACB 

có ^A _ chung ; AD/AC = AE/AB 

Vậy tam giác ADE ~ tam giác ACB (g.g) 

=> ^ADE = ^ACB 

mà ^ADE là góc ngoài đỉnh D 

Vậy tứ giác BDEC nt 1 đường tròn

12 tháng 3 2022

bạn giúp mk làm luôn 2 hai bài kia đc ko