K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2023

Bt đáp án chx

Giúp mk câu c

4 tháng 1 2017

 a)tg AEB và tg AFC có 
-^AEB=^AFC 
-^BEA=^FAC 
=>tg AEB đồng dạng tg AFC 
=>AE/AF=AB/AC 
=>AE. AC=AF.AB 
b) AE/AF=AB/AC
=>AE/AB= AF/AC 
tgAEF và tg ABC có 
-^EAF=^BAC 
- AE/AB= AF/AC 
=>tg AEF đồng dạng tg ABC 
c) tg AEB đồng dạng tg AFC 
=>^ABE=^ ACF 
hay ^FBH=^ECH 
tg FHB và tg EHC c ó 
-^FBH=^ECH 
-^FHB=^EHC 
=> tg FHB và tg EHC đồng dạng 
=>FH/EH=HB/HC 
tg FHE và tg BHC có 
- FH/EH=HB/HC 
-^FHE=^BHC(2 g óc đối đỉnh) 
=> tg FHE và tg BHC đồng dạng 
tg ABD và CBF có 
-^ADB=^CFB(=90 độ) 
-^ABD=^CBF 
=> tg ABD và CBF đồng dạng 
=>AB/BC=BD/BF 

=>BF.AB=BC.BD 
Tương tự chứng minh:CE.CA=CD.BC 
=> BF.AB+CE.CA =BC.BD+CD.BC=BC(BD.CD)=BC^2

4 tháng 1 2017

k hiểu j lun ák

1 tháng 5 2023

< Bạn tự vẽ hình nha>

a)Xét ΔABE và  ΔACF, ta có:

góc A: chung

góc F=góc E= 90o

Vậy  ΔABE ∼  ΔACF (g.g)

b)Xét  ΔHEC và  ΔHFB là:

góc H: chung

H1=H2(đối đỉnh)

Vậy  ΔHEC∼ ΔHFB (g.g)

\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC

<Mình chỉ biết đến đó thôi>bucminh

 

 

30 tháng 6 2019

Ad ĐỪNG XÓA 

 Học tiếng anh free vừa học vừa chơi đây 

các bạn vào đây đăng kí nhá :   https://iostudy.net/ref/165698

Cho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại FCho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N...
Đọc tiếp
Cho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại FCho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N đến AC, AD, BC. Gọi giao điểm của DM và CN là S. CMR:
1. Ba điểm K, L, R thẳng hàng
2. HN.CS=NC.SH
3. Tia phân giác của góc BAC cắt BC tại I, kẻ đường thẳng đi qua C và vuông góc với đường thẳng Al tại P, đường thẳng CP cắt đường thẳng AO tại Q. Gọi G là trung điểm của đoạn thẳng IQ. CMR: đường thẳng PG đi qua trung điểm của đoạn thẳng AC
0