Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\sqrt{\dfrac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\dfrac{\left(a\left(a+b+c\right)+bc\right)\left(b\left(a+b+c\right)+ac\right)}{c\left(a+b+c\right)+ab}}\)
\(=\sqrt{\dfrac{\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)}{ac+bc+c^2+ab}}\)
\(=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}}\)\(=\sqrt{\left(a+b\right)^2}=a+b\)
Tương tự cho 2 đẳng thức còn lại rồi cộng theo vế
\(P=a+b+b+c+c+a=2\left(a+b+c\right)=2\)
Ta có \(\sqrt{bc\left(1+a^2\right)}=\sqrt{bc+a^2bc}=\sqrt{bc+a\left(a+b+c\right)}\)
\(=\sqrt{\left(a+b\right)\left(a+c\right)}\)
Đặt BT đề cho là P
\(\Leftrightarrow P=\sum\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}=\sum\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{b+a}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)
Dấu \("="\Leftrightarrow a=b=c=\sqrt{3}\)
Vẽ AI, BI, CI cắt các cạnh đối diện thứ tự tại D,E,F.
Ta có công thức đường phân giác như sau:
\( AD^2 = \frac{{bc\left( {a + b + c} \right)\left( {b + c - a} \right)}}{{\left( {b + c} \right)^2 }} \)
Ta có:
\( \begin{array}{l} \frac{{IA}}{{ID}} = \frac{{BA}}{{BD}} = \frac{{CA}}{{CD}} = \frac{{b + c}}{a} \Leftrightarrow \frac{{IA}}{{AD}} = \frac{{b + c}}{{a + b + c}} \\ \Leftrightarrow IA^2 = AD^2 .\frac{{\left( {b + c} \right)^2 }}{{\left( {a + b + c} \right)^2 }} = \frac{{bc\left( {a + b + c} \right)\left( {b + c - a} \right)}}{{\left( {b + c} \right)^2 }}.\frac{{\left( {b + c} \right)^2 }}{{\left( {a + b + c} \right)^2 }} = \frac{{\left( {b + c - a} \right)bc}}{{a + b + c}} \\ \Leftrightarrow \frac{{IA^2 }}{{bc}} = \frac{{b + c - a}}{{a + b + c}} \\ \end{array} \)
Điều phải chứng minh
b) Từ câu a) ta suy ra được
\(\frac{IA^{^{2}}}{AB.AC}+\frac{IB^{2}}{BA.BC}+\frac{IC^{2}}{CA.CB}=1\)
\(\Leftrightarrow aIA^2+bIB^2+cIC^2=abc\)
Sử dụng BĐT Cauchy-Schwarz, ta có:
\(\left(IA+IB+IC\right)^2=\left(\dfrac{\sqrt{a}.IA}{\sqrt{a}}+\dfrac{\sqrt{b}.IB}{\sqrt{b}}+\dfrac{\sqrt{c}.IC}{\sqrt{c}}\right)^2\)
\(\le\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(aIA^2+bIB^2+cIC^2\right)\)
\(=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)abc=ab+bc+ca\)
\(\Rightarrow IA+IB+IC\le\sqrt{ab+bc+ca}\)
\(abc=1\Rightarrow\) đặt \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)
\(P=\sqrt{\dfrac{yz}{xy+xz}}+\sqrt{\dfrac{zx}{xy+yz}}+\sqrt{\dfrac{xy}{yz+zx}}\)
\(P=\dfrac{2yz}{2\sqrt{yz\left(xy+xz\right)}}+\dfrac{2zx}{2\sqrt{zx\left(xy+yz\right)}}+\dfrac{2xy}{2\sqrt{xy\left(yz+zx\right)}}\)
\(P\ge\dfrac{2yz}{xy+yz+zx}+\dfrac{2zx}{xy+yz+zx}+\dfrac{2xy}{xy+yz+zx}=2\)
Dấu "=" không xảy ra nên \(P>2\)
Không ai thảo luận câu này sao. T khởi động trước nhá.
Ta có: \(\cos\left(\dfrac{A-B}{2}\right)=\dfrac{\cos\left(\dfrac{A-B}{2}\right).\cos\left(\dfrac{A+B}{2}\right)}{\sin\dfrac{C}{2}}\)
\(=\dfrac{\cos A+\cos B}{2\sqrt{\dfrac{1-\cos C}{2}}}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{a^2+c^2-b^2}{2ca}}{2\sqrt{\dfrac{1-\dfrac{a^2+b^2-c^2}{2ab}}{2}}}\)
\(=\dfrac{\dfrac{\left(a+b\right)\left(c^2-\left(a-b\right)^2\right)}{abc}}{2\sqrt{\dfrac{c^2-\left(a-b\right)^2}{ab}}}=\dfrac{\left(a+b\right)\sqrt{c^2-\left(a-b\right)^2}}{2c\sqrt{ab}}\)
Ta sẽ chứng minh: \(\dfrac{\left(a+b\right)\sqrt{c^2-\left(a-b\right)^2}}{2c\sqrt{ab}}\le\dfrac{a+b}{\sqrt{2\left(a^2+b^2\right)}}\)
\(\Leftrightarrow\dfrac{2abc^2}{c^2-\left(a-b\right)^2}\ge a^2+b^2\)
\(\Leftrightarrow2abc^2-\left(a^2+b^2\right)\left(c^2-\left(a-b\right)^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2-c^2\right)\ge0\) (đúng vì tam giác ABC nhọn)
\(\Rightarrow\cos\left(\dfrac{A-B}{2}\right)\le\dfrac{a+b}{\sqrt{2\left(a^2+b^2\right)}}\left(1\right)\)
Tương tự ta có: \(\left\{{}\begin{matrix}\cos\left(\dfrac{B-C}{2}\right)\le\dfrac{b+c}{\sqrt{2\left(b^2+c^2\right)}}\left(2\right)\\\cos\left(\dfrac{C-A}{2}\right)\le\dfrac{c+a}{\sqrt{2\left(c^2+a^2\right)}}\left(3\right)\end{matrix}\right.\)
Cộng (1), (2), (3) vế theo vế ta được ĐPCM.
Thảo luận mình là người thứ 2
Chẳng thấy đề có kết nối giữa hai đại lượng [(ABC);(a,b,c)]
gì cả --> thiếu mối liên lạc cần thiết -->đề chưa thực sự rõ rằng --->Đề có suy biến --->lời giải (nếu có) phải là lời giải biện luận theo đề--->chưa thể chấp nhận lời giải trên
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(P=\sqrt{\dfrac{yz}{x^2+1}}+\sqrt{\dfrac{zx}{y^2+1}}+\sqrt{\dfrac{xy}{z^2+1}}\)
\(P=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}+\sqrt{\dfrac{zx}{y^2+xy+yz+zx}}+\sqrt{\dfrac{xy}{z^2+xy+yz+zx}}\)
\(P=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{zx}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)
\(P\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right)+\dfrac{1}{2}\left(\dfrac{z}{y+z}+\dfrac{x}{x+y}\right)+\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{3}{2}\)
\(P_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(a=b=c=\sqrt{3}\)
Câu a: tự chứng minh.
Câu b: áp dụng câu a
câu a dùng định lí hàm sin(Trong SGK nhé bạn)