Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh tam giác vuông ABH và ADI có:
AB = AD (đề)
góc BAH = góc DAI (đối đỉnh)
Nên tam giác ABH = ADI (cạnh huyền góc nhọn)
=> BH = DI
Chúc bạn học tốt !
Bạn tự vẽ hình nha !
Xét hai tam giác vuông ABH và AID có:
AB=AD (GT)
Góc BAH=IAD (đối đỉnh)
Suy ra tam giác ABH=AID (cạnh huyền và góc nhọn kề)
Suy ra BH=ID (hai cạnh tương ứng)
GT:AH vuông BC
AD=AB
DI vuông AH
KL:BH=ID
Bài làm
Ta có:
\(\widehat{A1}=\widehat{A2}\)(đối đỉnh)(1)
\(AB=AD\)(GT)(2)
mà\(\widehat{B}=180^0-90^0-\widehat{A1}\)
\(\widehat{D}=180^0-90^0-\widehat{A2}\)
và\(\widehat{A1}=\widehat{A2}\)
=>\(\widehat{B}=\widehat{D}\)(3)
Từ (1),(2),(3) suy ra:\(\Delta\)ABH=\(\Delta\)ADI(g-c-g)
=>BH=ID(hai cạnh tương ứng)
Vậy BH=ID
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
Sao đăng nhiều tek bạn. Đăng từng bài thoy!
1/ Ta có hình vẽ:
a/ Xét tam giác ABH và tam giác DBH có:
BH: chung
\(\widehat{AHB}\)=\(\widehat{DHB}\)=900
AH = HD (GT)
Vậy tam giác ABH = tam giác DBH (c.g.c)
=> \(\widehat{ABH}\)=\(\widehat{DBH}\) => BC là phân giác góc ABD
Xét tam giác ACH và tam giác DCH có:
CH: cạnh chung
\(\widehat{AHC}\)=\(\widehat{DHC}\)=900
AH = HD (GT)
Vậy tam giác ACH = tam giác DCH (c.g.c)
=> \(\widehat{ACH}\)=\(\widehat{DCH}\)=> CB là phân giác góc ACD
b/ Ta có: tam giác ABH = tam giác DBH (đã chứng minh trên)
=> BA = BD (2 cạnh tương ứng)
Ta có: tam giác ACH = tam giác DCH (đã chứng minh trên)
=> CA = CD (2 cạnh tương ứng)
c/ Ta có: tam giác ACH = tam giác DCH
=> \(\widehat{ACH}\)=\(\widehat{DCH}\)=450
Trong tam giác CHD có:
\(\widehat{C}\)+\(\widehat{H}\)+\(\widehat{D}\)=1800
450 + 900 + góc D = 1800
=> góc ADC = 450
d/ Đường cao AH phải có thêm điều kiện BH = HC => chứng minh tam giác ABH = CDH để AB//CD
2/ Ta có hình vẽ:
a/ Xét tam giác ABH và tam giác DBH có:
BH: chung
\(\widehat{B}=\widehat{H}=90^0\)
AH = BD (GT)
=> tam giác ABH = tam giác DBH (c.g.c)
b/ Ta có: tam giác ABH = tam giác DBH (câu a)
=> \(\widehat{ABH}\)=\(\widehat{BHD}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // HD (đpcm)
3/ Ta có hình vẽ:
a/ Xét tam giác ABI và tam giác ACI có:
AB = AC (GT)
BI = CI (GT)
AI: chung
=> tam giác ABI = tam giác ACI (c.c.c)
=> \(\widehat{BAI}\)=\(\widehat{CAI}\) => AI là phân giác \(\widehat{BAC}\)
b/ Xét tam giác AMB và tam giác ANC có:
MB = NC (GT)
\(\widehat{ABC}=\widehat{ACB}\)
Mà góc ABC + ABM = 1800
và góc ACB + ACN = 1800
=> \(\widehat{ABM}\)=\(\widehat{ACN}\)
AB = AC (GT)
=> tam giác AMB = tam giác ANC (c.g.c)
=> AM = AN (2 cạnh tương ứng)
c/ Ta có: tam giác ABI = tam giác ACI
=> \(\widehat{AIB}\)=\(\widehat{AIC}\) (2 góc tương ứng)
Mà \(\widehat{AIB}\)+\(\widehat{AIC}\)=1800
=> \(\widehat{AIB}\)=\(\widehat{AIC}\)=\(\frac{1}{2}\)1800 = 900
Vậy AI vuông góc BC (đpcm)
Làm tiếp mấy câu sau:
4/ Ta có hình vẽ:
a/ Xét tam giác OAM và tam giác OBM có:
OA = OB (GT)
\(\widehat{AOM}=\widehat{BOM}\) (GT)
OM: cạnh chung
=> tam giác OAM = tam giác OBM (c.g.c)
b/ Ta có: tam giác OAM = tam giác OBM (câu a)
=> AM = BM (2 cạnh tương ứng)
c/ Gọi giao điểm của AB và OM là N
Xét tam giác OAN và tam giác OBN có:
OA = OB (GT)
\(\widehat{AON}=\widehat{BON}\) (GT)
ON: chung
=> tam giác OAN = tam giác OBN (c.g.c)
=> \(\widehat{ONA}=\widehat{ONB}\) (2 góc tương ứng)
Mà \(\widehat{ONA}+\widehat{ONB}=180^0\)
=> \(\widehat{ONA}=\widehat{ONB}=\frac{1}{2}180^0=90^0\)
=> OM vuông góc AB hay OH vuông góc AB
Ta có: AB // CD, mà AB \(\perp\)OH = >CD \(\perp\)OH (đpcm)
5/ Ta có hình vẽ:
a/ Xét tam giác OAD và tam giác OBC có:
OA = OB (GT)
\(\widehat{AOB}\): góc chung
OA+AC=OB+BD => OC = OD
Vậy tam giác OAD = tam giác OBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)
b/ Ta có: AC = BD (GT) (1)
Ta có: \(\widehat{OAD}\)+\(\widehat{DAC}\)=1800 (kề bù)
Ta có: \(\widehat{OBC}\)+\(\widehat{CBD}\)=1800 (kề bù)
Mà \(\widehat{OAD}\)=\(\widehat{OBC}\) => \(\widehat{DAC}\)=\(\widehat{CBD}\) (2)
Ta có: góc C = góc D (tam giác OAD = tam giác OBC) (3)
Từ (1),(2),(3) => tam giác EAC = tam giác EBD
c/ Xét tam giác OAE và tam giác OBE có:
OA = OB (GT)
OE: cạnh chung
AE = BE (do tam giác EAC = tam giác EBD)
=> tam giác OAE = tam giác OBE (c.c.c)
=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
=> OE là phân giác góc xOy
6/ Ta có hình vẽ:
a/ Xét tam giác ADB và tam giác ADC có:
AB = AC (GT)
AD: cạnh chung
BD = DC (GT)
=> tam giác ADB = tam giác ADC (c.c.c)
b/ Ta có: tam giác ADB = tam giác ADC (câu a)
=> \(\widehat{ADB}\)=\(\widehat{ADC}\)(2 góc tương ứng)
Mà \(\widehat{ADB}\)+\(\widehat{ADC}\)=1800
=> \(\widehat{ADB}=\widehat{ADC}\)=900
Vậy AD \(\perp\) BC (đpcm)
Gợi ý : Xét 2 tam giác ABH và ADI
Xét t/giác ABH và t/giác AID
có : \(\widehat{H_1}=\widehat{I}=90^0\) (gt)
AB = AD (gt)
\(\widehat{A_1}=\widehat{A_2}\) (đối đỉnh)
=> t/giác ABH = t/giác AID (ch - gn)
=> BH = ID (2 cạnh t/ứng)