K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

AB/sinC = BC/sinA = CA/sinB cái này là định lý hàm số sin nè: chứng minh một cạnh của tam giác bằng đường kính nhân sin góc đối là ra 
cosA + cosB + cosC > (sinA + sinB + sinC)/2: kẻ 3 đg` cao AD BE CF cắt nhau tại H 
=> cosB=cosAHF=HF/AH, cosC=cosAHE=HE/AH 
EF=AH.sinA => sinA = EF/AH 
EF<HF + HE(bđt tam giác) 
=> sinA < cosB + cosC 
chứng minh tương tự => đpcm

loading...  loading...  loading...  

12 tháng 12 2015

Lê Hà Phương

6 tháng 9 2020

làm thế nào vậy

14 tháng 7 2021

Áp dụng hệ quả của định lý Cosin ta có:

\(\cos C=\dfrac{b^2+a^2-c^2}{2ab};\cos B=\dfrac{c^2+a^2-b^2}{2ca}\)

\(\Rightarrow b\cos C+c\cos B=b\dfrac{b^2+a^2-c^2}{2ab}+c\dfrac{c^2+a^2-b^2}{2ca}=\)

\(\dfrac{b^2+a^2-c^2}{2a}+\dfrac{c^2+a^2-b^2}{2a}=\dfrac{2a^2}{2a}=a\)

29 tháng 10 2021

Xét tam giác ABC nhọn có \(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos\widehat{A}\)
\(\Rightarrow\cos\widehat{A}=\dfrac{AB^2+AC^2-BC^2}{2AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4\cdot\dfrac{1}{2}AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4S_{ABC}}\)

Cmtt: \(\left\{{}\begin{matrix}\cos\widehat{B}=\dfrac{AB^2+BC^2-AC^2}{4S_{ABC}}\\\cos\widehat{C}=\dfrac{AC^2+BC^2-AB^2}{4S_{ABC}}\end{matrix}\right.\)
\(\Rightarrow\cos\widehat{A}+\cos\widehat{B}+\cos\widehat{C}\\ =\dfrac{AB^2+AC^2-BC^2+AB^2+BC^2-AC^2+AC^2+BC^2-AB^2}{4S_{ABC}}\\ =\dfrac{AB^2+AC^2+BC62}{4S_{ABC}}\)