Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có: AC∩DB=N��∩��=� là trung điểm mỗi đường
→ABCD→���� là hình bình hành
b.Từ câu a →AD//BC→AQ//CP→��//��→��//��
Mà AP⊥BC→AP⊥AD→AP//CQ(⊥AD)��⊥��→��⊥��→��//��(⊥��)
→AQCP→���� là hình bình hành
Mà AP⊥PC→APCQ��⊥��→���� là hình chữ nhật
→AC∩PQ→��∩�� tại trung điểm mỗi đường
Do N� là trung điểm AC��
→N→� là trung điểm PQ��
→P,N,Q→�,�,� thẳng hàng
c.Vì ABCD���� là hình bình hành
Để ABCD���� là hình vuông →AB⊥BC,BA=BC→ΔABC→��⊥��,��=��→Δ��� vuông cân tại B�
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a: Xét tứ giác ABCD có
N là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AD//BC và AB//CD
Ta có: AD//BC
AP\(\perp\)BC
Do đó: AP\(\perp\)AD
Ta có: AP\(\perp\)AD
CQ\(\perp\)AD
Do đó: AP//CQ
Ta có: AD//BC
Q\(\in\)AD
P\(\in\)BC
Do đó: AQ//CP
Xét tứ giác APCQ có
AQ//CP
AP//CQ
=>APCQ là hình bình hành
=>AC cắt PQ tại trung điểm của mỗi đường
mà N là trung điểm của AC
nên N là trung điểm của PQ
b: Để hình bình hành ABCD trở thành hình vuông thì ABCD vừa là hình chữ nhật vừa là hình thoi
ABCD trở thành hình chữ nhật khi \(\widehat{ABC}=90^0\)
ABCD trở thành hình thoi khi BA=BC
Vậy: Để ABCD trở thành hình vuông thì BA=BC và \(\widehat{ABC}=90^0\)
a: Xét tứ giác ABCD có
N là trung điểm chung của AC và BD
=>ABCD là hình bình hành
b: Ta có: ABCD là hình bình hành
=>AD//BC
Ta có: AD//BC
AP\(\perp\)BC
Do đó: AP\(\perp\)AD
Ta có: AP\(\perp\)AD
CQ\(\perp\)AD
Do đó: AP//CQ
ta có: AD//CB
\(Q\in\)AD
P\(\in\)BC
Do đó: AQ//CP
Xét tứ giác APCQ có
AP//CQ
AQ//CP
Do đó: APCQ là hình bình hành
=>AC cắt PQ tại trung điểm của mỗi đường
mà N là trung điểm của AC
nên N là trung điểm của PQ
=>P,N,Q thẳng hàng
c: Để hình bình hành ABCD trở thành hình vuông thì ABCD vừa là hình chữ nhật vừa là hình thoi(1)
Hình bình hành ABCD trở thành hình chữ nhật khi \(\widehat{ABC}=90^0\)(2)
Hình bình hành ABCD trở thành hình thoi khi BA=BC(3)
Từ (1),(2),(3) suy ra \(\left\{{}\begin{matrix}\widehat{ABC}=90^0\\BA=BC\end{matrix}\right.\)
Bài 12:
:v Mình sửa P là trung điểm của EG
A B C D E O Q N F G M I 1 2 P
a) Ta có: \(\widehat{EAC}=\widehat{EAB}+\widehat{BAC}=90^0+\widehat{BAC}\)
\(\widehat{GAB}=\widehat{GAC}+\widehat{BAC}=90^0+\widehat{BAC}\)
\(\Rightarrow\widehat{EAC}=\widehat{GAB}\)
Xét tam giác EAC và tam giác BAG có:
\(\hept{\begin{cases}EA=AB\\\widehat{EAC}=\widehat{GAB}\left(cmt\right)\\AG=AC\end{cases}}\Rightarrow\Delta EAC=\Delta BAG\left(c-g-c\right)\)
\(\Rightarrow CE=BG\)( 2 cạnh t. ứng )
+) Gọi O là giao điểm của EC và BG, Gọi I là giao điểm của AC và BG
Vì \(\Delta EAC=\Delta BAG\left(cmt\right)\)
\(\Rightarrow\widehat{ACE}=\widehat{AGB}\)
Vì tam giác AIG vuông tại A nên \(\widehat{I1}+\widehat{AGB}=90^0\)(2 góc phụ nhau )
Mà \(\widehat{ACE}=\widehat{AGB}\left(cmt\right),\widehat{I1}=\widehat{I2}\)( 2 góc đối đỉnh )
\(\Rightarrow\widehat{I2}+\widehat{ACE}=90^0\)
Xét tam giác OIC có \(\widehat{I2}+\widehat{ACE}+\widehat{IOC}=180^0\left(dl\right)\)
\(\Rightarrow\widehat{IOC}=90^0\)
\(\Rightarrow BG\perp EC\)
b) Vì ABDE là hình vuông (gt)
\(\Rightarrow EB\)cắt AD tại Q là trung điểm của mỗi đường (tc)
Xét tam giác EBC có Q là trung điểm của EB (cmt) , M là trung điểm của BC (gt)
\(\Rightarrow QM\)là đường trung bình của tam giác EBC
\(\Rightarrow QM=\frac{1}{2}EC\left(tc\right)\)
CMTT: \(PN=\frac{1}{2}EC;QP=\frac{1}{2}BG,MN=\frac{1}{2}BG\)
Mà EC=BG (cm câu a )
\(\Rightarrow QM=MN=NP=PQ\)
Xét tứ giác MNPQ có \(QM=MN=NP=PQ\left(cmt\right)\)
\(\Rightarrow MNPQ\)là hình thoi ( dhnb ) (1)
CM: MN//BG , QM//EC ( dựa vào đường trung bình tam giác )
Mà \(BG\perp EC\left(cmt\right)\)
\(\Rightarrow MN\perp MQ\)
\(\Rightarrow\widehat{QMN}=90^0\)(2)
Từ (1) và (2) \(\Rightarrow MNPQ\) là hình vuông ( dhnb )
\(\)
Bài 11:
A B C H D P E Q
a) Ta có: \(\widehat{HAD}+\widehat{HAE}=90^0+90^0=180^0\)
\(\Rightarrow\widehat{DAE}=180^0\)
\(\Rightarrow D,A,E\)thẳng hàng
b) Vì AHBD là hình chữ nhật (gt)
\(\Rightarrow AB\)cắt DH tại trung điểm mỗi đường (tc) và AB=DH(tc)
Mà P là trung điểm của AB (gt)
\(\Rightarrow P\)là trung điểm của DH (1)
\(\Rightarrow PH=\frac{1}{2}DH,PA=\frac{1}{2}AB\)kết hợp với AB=DH (cmt)
\(\Rightarrow PH=PA\)
\(\Rightarrow P\in\)đường trung trục của AH
CMTT Q thuộc đường trung trực của AH
\(\Rightarrow PQ\)là đường trung trực của AH
c) Từ (1) => P thuộc DH
=> D,P,H thẳng hàng
d) Vì ABCD là hình chữ nhật (gt)
=> DH là đường phân giác của góc BHA (tc) mà góc BHA= 90 độ
=> góc DHA= 45 độ
CMTT AHE =45 độ
=> góc DHA+ góc AHE=90 độ
Hay góc DHE=90 độ
=> DH vuông góc với HE