K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

A B C D E d

Giả sử đường thẳng d song song với BC và cắt cạnh AB và AC tại D,E. Ta dễ dạng chứng minh được tam giác ADE đồng dạng tam giác ABC vì DE // BC

Khi đó : \(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\frac{1}{2}\)

\(\Rightarrow\frac{AD}{AB}=\frac{\sqrt{2}}{2}\) (VÌ AD, AB > 0)

15 tháng 1 2017

A D E B C

SADE = SDEBC (gt) =>\(\frac{S_{ADE}}{S_{ABC}}=\frac{1}{2}\)

\(\Delta ADE,\Delta ABE\)có chung đường cao hạ từ E nên\(\frac{S_{ADE}}{S_{ABE}}=\frac{AD}{AB}\)

\(\Delta ABE,\Delta ABC\)có chung đường cao hạ từ B nên\(\frac{S_{ABE}}{S_{ABC}}=\frac{AE}{AC}\)

\(\Rightarrow\frac{S_{ADE}}{S_{ABE}}.\frac{S_{ABE}}{S_{ABC}}=\frac{AD}{AB}.\frac{AE}{AC}\).

\(\Delta ABC\)có DE // BC nên\(\frac{AD}{AB}=\frac{AE}{AC}\)(định lí Ta-let).Suy ra\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2\Rightarrow\frac{AD}{AB}=\frac{1}{\sqrt{2}}\)

11 tháng 12 2019

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Đặt S A B C   =   S .  Vì DE//AC nên Δ BED ∼ Δ BAC

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Lại có DF//AB nên Δ CDF ∼ Δ CBA

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Cộng theo vế của đẳng thức ( 1 ) và ( 2 ) ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy diện tích của tam giác ABC là  81 c m 2

30 tháng 9 2019

Áp dụng định lý Ta-lét:

Với EF // CD ta có  A F A D = A E A C

Với DE // BC ta có  A E A C = A D A B

Suy ra A F A D = A D A B  , tức là A F . A B   =   A D 2

Vậy 9.16 = A D 2 ó   A D 2 = 144 ó AD = 12

Đáp án: C

28 tháng 12 2016

Về bài hóa, bạn lên h.vn để hỏi nhé.

Mình làm 2 bài toán.

28 tháng 12 2016

Bài 2 :

A B C D

DE // AC \(\Rightarrow\frac{AE}{AB}=\frac{CD}{BC}\)( Định lý Ta-lét)

DF//AB \(\Rightarrow\frac{AF}{AC}=\frac{BD}{CD}\)(Định lý Ta-lét)

\(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BC}{BC}=1\)

Vậy ....

11 tháng 2 2017

Vì DE // BC nên theo định lý Ta-lét ta có  A D A B = A E A C

Từ đó  A D A B + C E C A = A E A C + C E C A = A C A C = 1

Đáp án: A