K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔABD có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABD cân tại A

=>AB=AD
 b: Ta có: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-30^0=60^0\)

Xét ΔABD cân tại A có \(\widehat{ABD}=60^0\)

nên ΔABD đều

c: Ta có: ΔABD đều

=>\(\widehat{DAB}=60^0\)

Ta có: \(\widehat{DAB}+\widehat{DAC}=\widehat{BAC}\)

=>\(\widehat{DAC}=90^0-60^0=30^0\)

Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)

nên ΔDAC cân tại D

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

\(\widehat{HDA}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDHA=ΔDEC

=>AH=EC

d: Xét ΔAHB vuông tại H có \(sinB=\dfrac{AH}{AB}\)

=>\(\dfrac{AH}{5}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(AH=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)

XétΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}\)

=>\(\dfrac{5}{BC}=sin30=\dfrac{1}{2}\)

=>BC=5*2=10(cm)

3 tháng 3 2016

Gọi I là giao điểm của AH và BC

Áp dụng định lí pytago trong tam giác vuông ABI ta có

BI2=AB2-AH2

BI2=8.52-42=56.25

BI=căn bậc hai của 56.25

Áp dụng định lí pytago trong tam giác vuông AIC ta có

IC^2=AC^2-AI^2

HC^2=5^2-4^2=9

HI=3

Ta co BI+IC=BC

      7.5+3=10.5

Chu vi của tam giác ABC là 8.5+5+10.5=24

26 tháng 3 2017

Áp dụng định lí Py-ta-go vào tam giác AHB vuông tại H có:

\(AB^2=AH^2+BH^2\)

=>\(BH^2=AB^2-AH^2=\left(8,5\right)^2-4^2=72.25-16=56.25\)

=> \(BH=\sqrt{56,25}=7.5\)

Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H có:

\(AC^{2^{ }}=AH^2+HC^2\)

=>\(HC^2=AC^2-AH^2=5^2-4^2=25-16=9\)

=>\(HC=\sqrt{9}=3\)

Vì H thuộc BC => BC=HB+HC=7.5+3=10.5

Chu vi tam giác ABC là: AB+AC+BC=8,5+5+10,5=24(cm)

Vậy chu vi tam giác ABC là 24 cm

9 tháng 4 2017

Kết quả không phải là 24 cm. Vì H nằm ngoài đoạn thẳng BC.

13 tháng 3 2021
Mọi người giúp em nhanh với🥺👉👈
13 tháng 3 2021

CÁC BN THỬ VÀO TRANG CÁ NHÂN CỦA MIK ĐI, BẤT NGỜ LẮM