K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2016

Đại số lớp 7

3 tháng 12 2016

A B C K E 1 2 1 2 1 2 M N

Giải:

Xét \(\Delta AMK,\Delta BCK\) có:
\(AK=KB\left(=\frac{1}{2}AB\right)\)

\(\widehat{K_1}=\widehat{K_2}\) ( đối đỉnh )

\(MK=KC\left(gt\right)\)

\(\Rightarrow\Delta AMK=\Delta BCK\left(c-g-c\right)\)

\(\Rightarrow\widehat{A_1}=\widehat{B}\) ( góc t/ứng )

Xét \(\Delta ANE,\Delta CBE\) có:
\(AE=EC\left(=\frac{1}{2}AC\right)\)

\(\widehat{E_1}=\widehat{E_2}\) ( đối đỉnh )

\(BE=EN\left(gt\right)\)

\(\Rightarrow\Delta ANE=\Delta CBE\left(c-g-c\right)\)

\(\Rightarrow\widehat{A_2}=\widehat{C}\) ( góc t/ứng )

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( tổng 3 góc của \(\Delta ABC\) )

\(\Rightarrow\widehat{A}+\widehat{A_1}+\widehat{A_2}=180^o\)

\(\Rightarrow\widehat{MAN}=180^o\)

\(\Rightarrow M,A,N\) thẳng hàng (1)

\(\Delta AMK=\Delta BCK\)

\(\Rightarrow MA=BC\) ( cạnh t/ứng )

\(\Delta ANE=\Delta CBE\)

\(\Rightarrow AN=BC\)

\(\Rightarrow MA=AN\left(=BC\right)\) (2)

Từ (1) và (2) \(\Rightarrow A\) là trung điểm của MN

Vậy A là trung điểm của MN

12 tháng 12 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét ΔAKM và ΔBKC ta có:

AK = BK (Vì K là trung điểm AB)

∠(AKM) =∠(BKC) (đối đỉnh)

KM=KC (giả thiết)

Suy ra: ΔAKM = ΔBKC(c.g.c)

⇒AM =BC (hai cạnh tương ứng)

Và ∠(AMK) =∠(BCK) (2 góc tương ứng)

Suy ra: AM // BC ( vì có cặp góc so le trong bằng nhau)

Tương tự: ΔAEN= ΔCEB(c.g.c)

⇒ AN = BC (2 cạnh tương ứng)

Và ∠(EAN) =∠(ECB) (2 góc tương ứng)

Suy ra: AN // BC (vì có cặp góc so le trong bằng nhau)

Ta có: AM // BC và AN // BC nên hai đường thẳng AM và AN trùng nhau hay A,M,N thẳng hàng (1)

Lại có: AM = AN ( vì cùng bằng BC) (2)

Từ (1) và (2) suy ra: A là trung điểm của MN

18 tháng 12 2020

Mình giả bài này rồi nhé, định bào bạn vào TK mình lục nhưng thôi tại mình cung đang rảnh:vv

+Xét \(\Delta AEN\) và \(\Delta CEB:\)

AE=CE(gt)

EN=EB(gt)

\(\widehat{AEN}=\widehat{CEB}\) (2 góc đối đỉnh)

=> \(\Delta AEN=\Delta CEB\left(c-g-c\right)\)

=> AN=CB(2 cạnh t/ứ)(1)

+Xét \(\Delta AKN\) và \(\Delta BKC:\)

AK=BK(gt)

MK=CK(gt)

\(\widehat{AKM}=\widehat{BKC}\) (2 góc đối đỉnh)

=> \(\Delta AKM=\Delta BKC\left(c-g-c\right)\)

=> AM=BC(2 cạnh t/ứ)(2)

Từ (1) và (2) suy ra: AM=AN (3)

Ta có: \(\left\{{}\begin{matrix}\widehat{MAK}=\widehat{CBK}\left(\Delta MAK=\Delta CKB\right)\\\widehat{NAE}=\widehat{BCE}\left(\Delta NAE=\Delta BCE\right)\end{matrix}\right.\)

Mà:  \(\widehat{CBK}+\widehat{BAC}+\widehat{BCE}=180^o\)

\(\widehat{MAK}+\widehat{BAC}+\widehat{NAE}=180^o\)

=> M, A, N thẳng hàng (4)

Từ (3) và (4) suy ra: A là trung điểm của MN

27 tháng 12 2020

cảm ơn bạn thật sự ạ !!! <3 

 

18 tháng 11 2016

Xét tam giác AKM và tam giác BKC có:

AK = BK (K là trung điểm của AB)

AKM = BKC ( 2 góc đối đỉnh)

KM = KC (gt)

=> Tam giác AKM = Tam giác BKC (c.g.c)

=> AM = BC (2 cạnh tương ứng) (1)

AMK = BCK (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AM // BC (2)

Xét tam giác AEN và tam giác CEB có:

AE = CE (E là trung điểm của AC)

AEN = CEB (2 góc đối đỉnh)

EN = EB (gt)

=> Tam giác AEN = Tam giác CEB (c.g.c)

=> AN = CB (2 cạnh tương ứng) (3)

ANE = CBE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AN // CB (4)

Từ (1) và (3)

=> AM = AN (5)

Từ (2) và (4)

=> A, M, N thẳng hàng (6)

Từ (5) và (6)

=> A là trung điểm của MN

18 tháng 11 2016

Bạn không nên đánh số nhiều quá sẽ rối bài.

 

13 tháng 12 2017

Do tam giác AKM=tam giác BKC

=> AM=BC, tam giác KAM=  tam giác KBCsuy ra AM//BC

Do tam giác AEN=tam giác CEBsuy ra AN=BC, AN=BC

DoAM//BC, AN//BCsuy ra M,A,N thẳng hàng(1)

AM=BC, AN=BC suy ra AM=AN(2)

Từ (1)và(2)suy ra A là trung điểm của MN

5 tháng 8 2018

Trả lời:

Mình ghi các bước giải nha!!

B1:  Xét \(\Delta MAK\)và \(\Delta CBK\)

\(\Rightarrow MA=BC\)( 2 cạnh tương ứng )

Mà \(AMKvàKCB\left(SLT\right)\)

\(\Rightarrow AM//BC\)

B2: Xét \(\Delta NAE\)và \(\Delta BCE\)

 \(\Rightarrow AN=BC\) ( 2 cạnh tương ứng )

Mà.........( tương tự như phần trên)

B3: Do \(AM//BC\) và \(AN//BC\) \(\left(CMT\right)\)

\(\Rightarrow M;A;N\) thẳng hàng

mà   \(AM=BC;AN=BC\)

\(\Rightarrow\) \(AM=AN\)

Hay A là trung điểm của \(MN\)

~ học tốt ~