Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé. Mình giải thôi.
1)Bạn chia 2 TH.
a) Góc MDB lớn hơn hoac bằng 60 độ
=>MD<MB mà ME>MC=MB
=>MD<ME.
b) Góc MDB nhỏ hơn 60 độ.
=> MD giao CA tại E .
Dễ dàng cminh DM<ME.
2) Ta có tam giác ABC cân tại A => AI là phân giác cũng là trung trực BC
=> AI trung trực BC. Mà AO là trung trục BC.
=> AI trùng AO.
=>OI là trung trực BC
Đè bài cần xem lại nhé.
3)Ta có góc B > góc C => AC>AB
Có AC đối dienj góc vuông trong tam giác vuông AEC => AC>CE
Tương tự AB>BD
Tất cả các điều => AC-AB>CE-BD
Chứng minh EM=DM =1/2 BC(trong tam giác vuông đường trung tuyến ứng vs cạnh huyền bằng nửa cạnh huyền)
A B C D E H M
a/ Ta có : AM = ME , BM = MC
=> Tứ giác ABEC là hình bình hành => CE = AB (1)
Xét tam giác ABH và tam giác BHD có góc BHA = góc BHD = 90 độ , BH là cạnh chung , AH = HD
=> tam giác ABH = tam giác BHD (c.g.c) => AB =BD (2)
Từ (1) và (2) suy ra được BD = CE
b/ Từ câu a) ta có tam giác ABH = tam giác BHD (c.g.c) => góc ABH = góc BHD
=> BC là tia phân giác góc ABD
c/ Ta có \(\hept{\begin{cases}AH=HD\\BH\perp AD\end{cases}}\) => BH là đường trung trực của AD hay
BC là đường trung trực của AD.
Ta có hình vẽ:
A B C D E M H
a) Xét Δ CME và Δ BMA có:
EM = AM (gt)
CME = BMA (đối đỉnh)
CM = BM (gt)
Do đó, Δ CME = Δ BMA (c.g.c)
=> CE = AB (2 cạnh tương ứng) (1)
Chứng minh tương tự và => Δ ABH = Δ DBH (c.g.c)
=> AB = BD (2 cạnh tương ứng)
Từ (1) và (2) => CE = BD (đpcm)
b) Vì Δ ABH = Δ DBH (câu a) nên góc ABH = góc DBH (2 góc tương ứng)
=> BH là phân giác của góc ABD hay BC là phân giác của góc ABD (đpcm)
c) Vì \(AH\perp BC\) nên \(AD\perp BC\)
Mà AH = DH (gt)
Do đó, BC là đường trung trực của AD (đpcm)
. xét tam giác ABD và tam giác ACE có
. A là góc chung .
. góc E = góc D = 90 độ (gt)
.AB=AC(gt)
=> tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn )
=> BD = CE ( 2 cạnh tương ứng )
b/
Ta có : góc B = góc C ( tam giác ABC cân )
Mà góc B = B1 + B2
C= C1 + C2
Ta lại có : B1 = C1( tam giác ABD = tam giác ACE) ; góc B= góc C
=> góc B2 = C2
=> tam giác BHC cân tại B
c/
ta có : AB= AC ( tam giác ABC cân )
=> A thuộc đường trung trực của BC (1)
Ta lại có : HB=HC (tam giác BHC cân )
=> H thuộc đường trung trực của BC (2)
từ (1) và (2) suy ra : AH là đường trung trực của BC .
( Đường trung trực là đường đi qua trung điểm và cách đều 2 đầu mút của điểm đó )
CÂU D MÌNH KHÔNG BIẾT !!! XIN LỖI NHA .
a). Xét tam giác ABD và tam giác ACE có
. A là góc chung .
. Góc E = góc D = 90 độ (gt)
.AB=AC(gt)
=> tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn )
=> BD = CE ( 2 cạnh tương ứng )
b) Ta có : góc B = góc C ( tam giác ABC cân )
Mà góc B = B1 + B2
C= C1 + C2
Ta lại có : B1 = C1( tam giác ABD = tam giác ACE) ; góc B= góc C
=> góc B2 = C2
=> tam giác BHC cân tại B
c) Ta có : AB= AC ( tam giác ABC cân )
=> A thuộc đường trung trực của BC (1)
Ta lại có : HB=HC (tam giác BHC cân )
=> H thuộc đường trung trực của BC (2)
Từ (1) và (2) suy ra : AH là đường trung trực của BC .
( Đường trung trực là đường đi qua trung điểm và cách đều 2 đầu mút của điểm đó )
Điểm F ở đâu thế bạn ?