Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(_{\Delta}\)ANC và \(\Delta\)ENB có:
AN = EN (gt)
\(\widehat{ANC}\) = \(\widehat{ENB}\) (đối đỉnh)
NC = NB (suy từ gt)
=> \(\Delta\)ANC = \(\Delta\)ENB (c.g.c)
b) Vì \(\Delta\)ANC = \(\Delta\)ENB (câu a)
nên \(\widehat{ACN}\) = \(\widehat{EBN}\) ( 2 góc t ư )
mà 2 góc này ở vị trí so le trong nên AC // BE.
c) Do AC // BE nên \(\widehat{QAN}\) = \(\widehat{NEP}\) ( so le trong )
Xét \(\Delta\)QAN và \(\Delta\)PEN có:
QA = PE (gt)
\(\widehat{QAN}\) = \(\widehat{NEP}\) (cm trên)
AN = EN (gt)
=> \(\Delta\)QAN = \(\Delta\)PEN (c.g.c)
=> \(\widehat{ANQ}\) = \(\widehat{ENP}\) ( 2gosc tư )
mà \(\widehat{ANP}\) + \(\widehat{ENP}\) = 180 độ (kề bù)
=> \(\widehat{ANP}\) + \(\widehat{ANQ}\) = 180 độ
mà 2 góc này kề nhau nên Q, N, P thẳng hàng.
a) CMR AC // BE
xét tam giacs AMC và tam giác EMB
có AM = ME (gt)
BM = MC (M trung điểm BC)
\(\widehat{AMC}=\widehat{EMB}\left(dd\right)\)
=> tam giác AMC = tam giác EMB (cgc)
=> \(\widehat{MBE}=\widehat{MCB}\)mà chúng ở vị trí so le trong => AC//BE
b) bạn tự thêm điểm I và K vào hình vẽ nhé, mình lười :))
ta có I thuộc AC, K thuộc BE nên
IC = AC - AI và BK = BE - KE
mà AC = BE (cmt), AI = KE (gt)
=> IC = BK
xét tam giác IMC và tam giác KMB
có: BK = IC (cmt)
BM = MC (cmt)
góc MBK = góc ICM (AC//BE)
=> tam giác IMC = tam giác KMB (cgc)
=> góc IMC = góc KMB
khi đó góc IMK = 180 độ
I, M, K thẳng hàng
a) xét tam giác ADM và tam giac BDC ta có
MD=DC (gt)
AD=DB(D là trung điểm AB)
góc ADM=góc BDC (2 góc doi đỉnh)
-> tam giác ADM= tam giác BDC (c-g-c)
b) ta có
góc MAD = góc DBC ( tam giác ADM= tam giác BDC )
mà 2 góc nẳm o vị trí soletrong
nên AM//BC
c)
xét tam giác AEN và tam giac BEC ta có
EN=EB (gt)
AE=EC(E là trung điểm AC)
góc AEN=góc BEC (2 góc doi đỉnh)
-> tam giác ANE = tam giác CBE (c-g-c)
-> góc NAE = góc BCE (2 góc tương ứng
mà 2 góc nằm o vi trí sole trong
nên AN//BC
ta có
AN//BC (cmt)
AM//BC (cmb)
-> AM trùng AN
-> A,M,N thẳng hàng
*-Bạn tự vẽ hình nhé!*
CM:a) Xét tam giác ADM và tam giác BDC có:
AD=BD(D là trung điểm của AB)
Góc ADM=góc BDC(đối đỉnh)
DM=DC(gt)
=> tgiac ADM = tgiac BDC (c.g.c)
b) =>góc MAD= góc DBC (hai góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AM song song BC (1)
c) chứng minh tương tự, ta có: tgiac AEN=tgiac CEB(c.g.c)
=> góc NAE= góc CEB(hai góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> BC song song AN (2)
Từ (1) và (2)=> MA song song BC; AN song song BC
=> A,M,N thẳng hàng (ơ-clit)
*- cho mk nha!!!-Mơn b *:)*
a) Xét △ANC và △ENB có :
NA = NE (gt)
góc ANC = góc ENB ( 2 góc đđ )
NB = NC ( N la trung điểm của BC )
=> △ANC = △ENB (c-g-c)
Vì △ANC = △ENB nên góc EBN = góc ACN ( 2 goc tương ứng )
b) Vì góc EBN = góc ACN mà 2 góc này ở vị trí slt nên AC // BE
cám ơn bạn rất nhìu rất nhìu nhìu