K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1

loading... a) Do M là trung điểm của BC (gt)

⇒ BM = MC

Do M là trung điểm của AD (gt)

⇒ AM = MD

Xét ∆ABM và ∆DCM có:

AM = MD (cmt)

∠AMB = ∠CMD (đối đỉnh)

BM = MC (cmt)

⇒ ∆ABM = ∆DCM (c-g-c)

b) Do ∆ABM = ∆DCM (cmt)

⇒ ∠ABM = ∠CDM (hai góc tương ứng)

Mà ∠ABM và ∠CDM là hai góc so le trong

⇒ AB // CD

c) Do AB // CD (cmt)

⇒ ∠CAE = ∠ACD (so le trong)

∠ACE = ∠CAD (so le trong)

Xét ∆ACE và ∆CAD có:

∠ACE = ∠CAD (cmt)

AC là cạnh chung

∠CAE = ∠ACD (cmt)

⇒ ∆ACE = ∆CAD (g-c-g)

⇒ AE = CD (hai cạnh tương ứng)

Do ∆ABM = ∆DCM (cmt)

⇒ AB = CD (hai cạnh tương ứng)

Mà AE = CD (cmt)

⇒ AB = AE

Vậy A là trung điểm của BE

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau

16 tháng 10 2018