Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC
a) Xét t/g AEF và t/g CED có :
AE=CE ( E là trung điểm AC)
góc AEF = góc CED ( đối đỉnh)
EF=ED( gt)
=> t/g AEF = t/g CED ( c.g.c)
=> AF=DC ( 2 cạnh tương ứng )
b)
Xét t/g AED và t/g CEF có:
AE = EC (gt)
AED = CEF ( đối đỉnh)
ED = EF (gt)
Do đó, t/g AED = t/g CEF (c.g.c)
=> AD = CF (2 cạnh tương ứng)
ADE = CFE (2 góc tương ứng)
Mà ADE và CFE là 2 góc so le trong
nên CF // AD hay CF // AB hay CF//DB
Nối đoạn CD
Xét t/g BDC và t/g FCD có:
BD = FC ( cùng = AD)
BDC = FCD (so le trong)
CD là cạnh chung
Do đó, t/g BDC = t/g FCD (c.g.c)
=> BC = FD ( 2 cạnh tương ứng )
Mà DE=EF=1/2 FD
=>DE=1/2 BC ( đpcm)
Lại có : t/g BDC =t/g FCD ( cmt)
=> BCD = FDC (2 góc tương ứng)
Mà BCD và FDC là 2 góc so le trong
nên DF // BC
hay DE // BC ( E thuộc DF)( đpcm)
a)
Xét \(\Delta AED\)và \(\Delta CEF\)
+ AE = CE(gt)
+ DE = EF(gt)
+ \(\widehat{AED}=\widehat{CEF}\)(đổi đỉnh)
\(\Delta AED=\Delta CEF\left(c.g.c\right)\)
b) Ta có CF = AD ( hai cạnh tương ứng)
Mà AD = BD => BD = CF
Ta lại có : \(\widehat{EAD}=\widehat{ECF}\)(hai góc tương ứng)
Mà hai góc này nằm ở vị trí so le trong nên FC//AB
c) \(\Delta BDC=\Delta FCD\)(c.g.c)
+ Chung CD
+ \(\widehat{BDC}=\widehat{FCD}\)(so le trong)
+ BD = CF(cmt)
d) Từ c) ta có DE = BC
Mà DE = 2.EF=BC
=> EF=1/2 BC
Bạn tư vẽ hình
Xét \(\Delta ADE\) và \(\Delta CEF\)có:
\(\hept{\begin{cases}AE=EC\left(gt\right)\\\widehat{AED}=\widehat{CEF}\\DE=EF\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta ADE=\Delta CEF\left(c.g.c\right)\)
Do đó \(\widehat{A}=\widehat{ECF}\)(hai góc tương ứng)
Mà hai góc này ở vị trí so le trong
Do đó AB song song với CF (dấu hiệu nhận biết)
a)Xét \(\Delta DEC\)và\(\Delta FEA\)có:
EC=AE(E là trung điểm của AC)
\(\widehat{CED}=\widehat{AEF}\)(2 góc đối đỉnh)
DE=FE(gt)
=>\(\Delta DEC=\Delta FEA\left(c-g-c\right)\)
=>FA=DC(2 cạnh tương ứng)
b)Vì \(\Delta DEC=\Delta FEA\)=>\(\widehat{FAE}=\widehat{ECD}\)
Mà 2 góc này ở vị trí so le trong=>FA//DC
=>\(\widehat{FAD}=\widehat{CDB}\)(2 góc đồng vị)
Xét \(\Delta ADF\)và\(\Delta DBC\)có:
FA=DC(theo phần b)
\(\widehat{FAD}=\widehat{CDB}\)(cmt)
AD=DB(D là trung điểm của AB)
=>DF=BC ; \(\widehat{ADF}=\widehat{DBC}\)
mà \(DF=2DE\) ; Mà 2 góc này ở vị trí đồng vị
=>\(BC=2DE\) ; =>DE//BC
=>DE=\(\frac{1}{2}BC\)
Vậy DE=\(\frac{1}{2}\)BC;DE//BC
(tự vẽ hình)
a, Xét tam giác AED vs tam giác CEFcó:
AE=EC(gt)
DE=EF(gt)
góc AED=góc FEC (đối đỉnh)
=> 2 tam giác bằng nhau (c.g.c)
=>AD=FC(tương ứng)
b,Vì tam giác AED=CEF(cmt)
=> góc AED = góc FEC tương ứng. mà 2 góc ở vị trí so le trong nên => AD//FC
=>AB//FC tương ứng
c, dễ tự CM