Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
A B C D E F
a) Xét \(\Delta AEF\) và \(\Delta CED\) có :
AE = CE ( E là trung điểm AC )
\(\widehat{ AEF}\) = \(\widehat{CED}\) ( đối đỉnh)
EF = ED ( gt )
\(\Rightarrow\)\(\Delta AEF =\Delta CED\) ( c.g.c)
\(\Rightarrow\text{ }AF=DC\) ( 2 cạnh tương ứng )
b)
Xét \(\Delta AED\) và \(\Delta CEF\) có:
AE = EC (gt)
AED = CEF ( đối đỉnh)
ED = EF (gt)
Do đó, \(\Delta AED\) = \(\Delta CEF\) (c.g.c)
=> AD = CF (2 cạnh tương ứng)
ADE = CFE (2 góc tương ứng)
Mà ADE và CFE là 2 góc so le trong
nên CF // AD hay CF // AB hay CF//DB
Nối đoạn CD
Xét \(\Delta BDC\) và \(\Delta FCD\) có:
BD = FC ( cùng = AD)
BDC = FCD (so le trong)
CD là cạnh chung
Do đó, \(\Delta BDC\) = \(\Delta FCD\) (c.g.c)
=> BC = FD ( 2 cạnh tương ứng )
Mà \(DE=EF=\frac{1}{2}FD\)
=>DE=1/2 BC ( đpcm)
Lại có : \(\Delta BDC=\Delta FCD\)( cmt)
=> BCD = FDC (2 góc tương ứng)
Mà BCD và FDC là 2 góc so le trong nên DF // BC hay DE // BC ( E thuộc DF) ( đpcm)
a)Xét \(\Delta DEC\)và\(\Delta FEA\)có:
EC=AE(E là trung điểm của AC)
\(\widehat{CED}=\widehat{AEF}\)(2 góc đối đỉnh)
DE=FE(gt)
=>\(\Delta DEC=\Delta FEA\left(c-g-c\right)\)
=>FA=DC(2 cạnh tương ứng)
b)Vì \(\Delta DEC=\Delta FEA\)=>\(\widehat{FAE}=\widehat{ECD}\)
Mà 2 góc này ở vị trí so le trong=>FA//DC
=>\(\widehat{FAD}=\widehat{CDB}\)(2 góc đồng vị)
Xét \(\Delta ADF\)và\(\Delta DBC\)có:
FA=DC(theo phần b)
\(\widehat{FAD}=\widehat{CDB}\)(cmt)
AD=DB(D là trung điểm của AB)
=>DF=BC ; \(\widehat{ADF}=\widehat{DBC}\)
mà \(DF=2DE\) ; Mà 2 góc này ở vị trí đồng vị
=>\(BC=2DE\) ; =>DE//BC
=>DE=\(\frac{1}{2}BC\)
Vậy DE=\(\frac{1}{2}\)BC;DE//BC
A B C E D F 1 2 1 2 1 2 1 2
Sửa đề: a) CMR : t/giác ABD = t/giác EBD; c) CMR: DC = DF
CM: a) Xét t/giác ABD và t/giác EBD
có: AB = BE (gt)
BD: chung
\(\widehat{B_1}=\widehat{B_2}\)(gt)
=> t/giác ABD = t/giác EBD (c.g.c)
b) Ta có: t/giác ABD = t/giác EBD (cmt)
=> \(\widehat{A_1}=\widehat{E_1}\)(2 góc t/ứng)
Mà \(\widehat{A_1}=90^0\) => \(\widehat{E_1}=90^0\)
=> DE \(\perp\)BC
c) Xét t/giác ADF và t/giác EDC
có: AD = DE (vì t/giác ABD = t/giác EBC)
\(\widehat{A_2}=\widehat{E_2}=90^0\)
\(\widehat{D_1}=\widehat{D_2}\)(đối đỉnh)
=> t/giác ADF = t/giác EDC (g.c.g)
=> DC = DF (2 cạnh t/ứng)
E B A C M D O
a) Xét tam giác CMA và tam giác BMD có :
\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)
=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)
=> ACBD là hình bình hành
=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm
b) Xét tam giác ABC và tam giác CDA có :
\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)
Chung AC
=> AD=BC
=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm
c) Xét tam giác ABC có :
M là trung điểm BC
A là trung điểm CE
Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm )
e) AM //BE => AD // BE
Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B
=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)
Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm
=> E,O , D thẳng hàng => đpcm
E D C B H K x M N A
a) Xét \(\Delta BEA\) và \(\Delta DCA\) có:
AE = AC (gt)
\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)
AB = AD (gt)
\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)
\(\Rightarrow BE=CD\) (2 cạnh t/ư)
b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)
\(DN=\frac{1}{2}CD\) (N là tđ)
mà BE = CD \(\Rightarrow BM=DN\)
Vì \(\Delta BEA=\Delta DCA\) (câu a)
\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)
hay \(\widehat{MBA}=\widehat{NDA}\)
Xét \(\Delta ABM\) và \(\Delta ADN\) có:
AB = AD (gt)
\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)
BM = DN (c/m trên)
\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)
mà \(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)
\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)
\(\Rightarrow M,A,N\) thẳng hàng.
a: Xét ΔEAI và ΔECD có
EA=EC
góc AEI=góc CED
EI=ED
=>ΔEAI=ΔECD
=>AI=CD
b: ΔEAI=ΔECD
=>góc EAI=góc ECD
=>AI//CD
c: Xét ΔDAI và ΔBDC có
DA=BD
AI=DC
DI=BC
=>ΔDAI=ΔBDC
d: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
nên DE là đường trung bình
=>DE=1/2BC và ED//BC