Cho tam giác ABC. Gọi D, E theo thứ tự là trung điểm của AB, AC.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEAI và ΔECD có

EA=EC

góc AEI=góc CED

EI=ED

=>ΔEAI=ΔECD

=>AI=CD

b: ΔEAI=ΔECD

=>góc EAI=góc ECD

=>AI//CD

c: Xét ΔDAI và ΔBDC có

DA=BD

AI=DC

DI=BC

=>ΔDAI=ΔBDC

d: Xét ΔABC có 

D,E lần lượt là trung điểm của AB,AC

nên DE là đường trung bình

=>DE=1/2BC và ED//BC

14 tháng 9 2020

                                                                Bài giải

A B C D E F

a) Xét  \(\Delta AEF\)\(\Delta CED\) có :

AE = CE ( E là trung điểm AC )

\(\widehat{ AEF}\) = \(\widehat{CED}\) ( đối đỉnh)

EF = ED ( gt )

\(\Rightarrow\)\(\Delta AEF =\Delta CED\) ( c.g.c)

\(\Rightarrow\text{ }AF=DC\)  ( 2 cạnh tương ứng ) 

b)

Xét \(\Delta AED\) và \(\Delta CEF\) có:

AE = EC (gt)

AED = CEF ( đối đỉnh)

ED = EF (gt)

Do đó, \(\Delta AED\)  =  \(\Delta CEF\) (c.g.c)

=> AD = CF (2 cạnh tương ứng)

ADE = CFE (2 góc tương ứng)

Mà ADE và CFE là 2 góc so le trong

nên CF // AD hay CF // AB hay CF//DB

Nối đoạn CD

Xét \(\Delta BDC\)\(\Delta FCD\) có:

BD = FC ( cùng = AD)

BDC = FCD (so le trong)

CD là cạnh chung

Do đó, \(\Delta BDC\)  = \(\Delta FCD\)  (c.g.c)

=> BC = FD ( 2 cạnh tương ứng )

\(DE=EF=\frac{1}{2}FD\) 

=>DE=1/2 BC ( đpcm)

Lại có : \(\Delta BDC=\Delta FCD\)( cmt)

=> BCD = FDC (2 góc tương ứng)

Mà BCD và FDC là 2 góc so le trong nên DF // BC hay DE // BC ( E thuộc DF) ( đpcm)

28 tháng 11 2021

Gợi ý: Xét tam giác AEI và tam giác CED 

28 tháng 11 2021

xem xét ròi nhưng chưa hiểu lắm

20 tháng 7 2017

a)Xét \(\Delta DEC\)\(\Delta FEA\)có:

EC=AE(E là trung điểm của AC)

\(\widehat{CED}=\widehat{AEF}\)(2 góc đối đỉnh)

DE=FE(gt)

=>\(\Delta DEC=\Delta FEA\left(c-g-c\right)\)

=>FA=DC(2 cạnh tương ứng)

b)Vì \(\Delta DEC=\Delta FEA\)=>\(\widehat{FAE}=\widehat{ECD}\)

Mà 2 góc này ở vị trí so le trong=>FA//DC

=>\(\widehat{FAD}=\widehat{CDB}\)(2 góc đồng vị)

Xét \(\Delta ADF\)\(\Delta DBC\)có:

FA=DC(theo phần b)

\(\widehat{FAD}=\widehat{CDB}\)(cmt)

AD=DB(D là trung điểm của AB)

=>DF=BC                             ;            \(\widehat{ADF}=\widehat{DBC}\)

\(DF=2DE\)           ;            Mà 2 góc này ở vị trí đồng vị

=>\(BC=2DE\)             ;            =>DE//BC

=>DE=\(\frac{1}{2}BC\)

Vậy DE=\(\frac{1}{2}\)BC;DE//BC

26 tháng 2 2018

ở câu a) tam giác EBC hay tam giác EBD vậy bạn?
 

3 tháng 4 2020

A B C E D F 1 2 1 2 1 2 1 2

Sửa đề: a) CMR : t/giác  ABD = t/giác EBD; c) CMR: DC = DF

CM: a) Xét t/giác  ABD và t/giác EBD

có: AB = BE (gt)

  BD: chung

 \(\widehat{B_1}=\widehat{B_2}\)(gt)

=> t/giác ABD = t/giác EBD (c.g.c)

b) Ta có: t/giác ABD = t/giác EBD (cmt)

=> \(\widehat{A_1}=\widehat{E_1}\)(2 góc t/ứng)

Mà \(\widehat{A_1}=90^0\) => \(\widehat{E_1}=90^0\)

   => DE \(\perp\)BC

c) Xét t/giác ADF và t/giác EDC

có: AD = DE (vì t/giác ABD = t/giác EBC)

  \(\widehat{A_2}=\widehat{E_2}=90^0\)

 \(\widehat{D_1}=\widehat{D_2}\)(đối đỉnh)

=> t/giác ADF = t/giác EDC (g.c.g)

=> DC = DF (2 cạnh t/ứng)

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm 

21 tháng 2 2017

E D C B H K x M N A

a) Xét \(\Delta BEA\)\(\Delta DCA\) có:

AE = AC (gt)

\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)

AB = AD (gt)

\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)

\(\Rightarrow BE=CD\) (2 cạnh t/ư)

b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)

\(DN=\frac{1}{2}CD\) (N là tđ)

mà BE = CD \(\Rightarrow BM=DN\)

\(\Delta BEA=\Delta DCA\) (câu a)

\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)

hay \(\widehat{MBA}=\widehat{NDA}\)

Xét \(\Delta ABM\)\(\Delta ADN\) có:

AB = AD (gt)

\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)

BM = DN (c/m trên)

\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)

\(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)

\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)

\(\Rightarrow M,A,N\) thẳng hàng.

22 tháng 2 2017

Bài làm rất công phu

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá