K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 10 2020

\(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)+\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BC}\right)+\frac{1}{2}\left(\overrightarrow{CA}+\overrightarrow{CB}\right)\)

\(=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\frac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)+\frac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)=\overrightarrow{0}\)

4 tháng 2 2022

Đợi tẹo

4 tháng 2 2022

undefined

T chôm giấy viết lm cho bẹn đó😂

4 tháng 12 2020

a) Do A'M và BC cắt nhau tại trung điểm K của mỗi đường nên tứ giác A'BMC là hình bình hành
\(\Rightarrow MC//A'B;MC=A'B\). (1)

Tương tự ta có \(MC//AB';MC=AB'\). (2)

Từ (1) và (2) suy ra \(AB'//A'B;A'B=AB'\)

\(\Rightarrow\) Tứ giác AB'A'B là hình bình hành

\(\Rightarrow\) AA' và BB' cắt nhau tại trung điểm của mỗi đường.

Tương tự, BB' và CC' cắt nhau tại trung điểm của mỗi đường.

Vậy AA', BB', CC' đồng quy.

b) Gọi G là giao điểm của AK và MN.

\(\Delta AMA'\) có: \(\left\{{}\begin{matrix}KA'=KM\\NA=NA'\\G\in AK\cap MN\end{matrix}\right.\)

\(\Rightarrow\) G là trọng tâm của tam giác AMA'

\(\Rightarrow AG=\frac{2}{3}AK\).

\(\Delta ABC\) có: \(\left\{{}\begin{matrix}KB=KC\\G\in AK\\AG=\frac{2}{3}AK\end{matrix}\right.\)

\(\Rightarrow\) G là trọng tâm của tam giác ABC.

Vậy MN luôn đi qua trọng tâm G của tam giác ABC.

Trong mặt phẳng tọa độ cho 3 điểm A ( 1,2), B ( -2,6) C( 9,8)a) Chứng minh A,B,C là 3 đỉnh của một tam giác. Tính \(\overrightarrow{AB}.\overrightarrow{AC}\)b) Gọi A', B', C' lần lượt là trung điểm của BC, AC,AB. Tìm tọa độ A', B', C'c) Tìm tâm và bán kính đường tròn ngoại tiếp tam giác ABCd) Tìm tọa độ trực tâm H và trọng tâm G của tam giác ABCe) Tính chu vi và diện tích tam giác ABCf) Tìm tọa độ điểm N trên Ox để tam giác...
Đọc tiếp

Trong mặt phẳng tọa độ cho 3 điểm A ( 1,2), B ( -2,6) C( 9,8)

a) Chứng minh A,B,C là 3 đỉnh của một tam giác. Tính \(\overrightarrow{AB}.\overrightarrow{AC}\)

b) Gọi A', B', C' lần lượt là trung điểm của BC, AC,AB. Tìm tọa độ A', B', C'

c) Tìm tâm và bán kính đường tròn ngoại tiếp tam giác ABC

d) Tìm tọa độ trực tâm H và trọng tâm G của tam giác ABC

e) Tính chu vi và diện tích tam giác ABC

f) Tìm tọa độ điểm N trên Ox để tam giác ANC cân tại N

g) Tìm tọa độ điểm D sao cho ABDC là hình chữ nhật

h) Tìm tọa độ điểm K trên Ox để AOKB là hình thang đáy OA

i) Tìm điểm I sao cho \(\overrightarrow{IA}+3\overrightarrow{IB}-\overrightarrow{IC}=\overrightarrow{0}\)

j) Tìm tập hợp điểm M sao cho 

\(\left|\overrightarrow{MA}+3\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}-3\overrightarrow{MC}\right|\)

k) Tìm điểm M sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất 

 

 

0
1 tháng 9 2021

a)các vectow cùng phương với AM LÀ: MA ;MB;BM;BA;AB;PN;NP

b)các vectow cùng hướng  MN là:BP;PC;BC

c)các vectow ngược hướng với BC là:CP;CP;NM