K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2014

bai nay minh khong biet

 

16 tháng 10 2014

 Vi AH la duong cao cua tam giác ABC vuong tai A nen ta co:

AH^2=BH.CH=>CH=AH^2:BH=12^2:7 xấp xỉ 20,6(cm)

Mà BC=BH+CH=7+20,6 xap xi 27,6(cm)

 

14 tháng 7 2017

Le Mai Linh

a)ta thấy AB^2+AC^2=56.25 và BC^2=56.25 
=>AB^2+BC^2=BC^2<=>tam jác ABC vuông tại A 
Sin B=AC/BC=4.5/7.5<=>B=36độ 52 phút 11.63 giây (bấm shift sin 4.5/7.5 =) 
sin c=AB/BC =>C=53đô 7 phút 48.37 giây 
Sin C=AH/Ac =>AH=sin C*AC=3.6 

câu b khó quá

15 tháng 7 2017

Cam on bn nhiu nha

29 tháng 10 2015

ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(a+b-2\sqrt{ab}\ge0\)

\(a+b\ge2\sqrt{ab}\)

\(\frac{a+b}{2}\ge\sqrt{ab}\)

25 tháng 12 2016

Ta có AH2=CH.BH=ab (1)

Gọi M là trung điểm của BC.

Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)

Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)

Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

10 tháng 7 2018

hình tự vẽ nhé:

Áp dụng hệ thức lượng ta có:

       \(AC^2=HC.BC=9BC\)

       \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(400+9BC=BC^2\)

\(\Leftrightarrow\)\(BC^2-9BC-400=0\)

\(\Leftrightarrow\)\(\left(BC-25\right)\left(BC+16\right)=0\)

\(\Leftrightarrow\)\(BC=25\)

 \(\Rightarrow\)\(AC^2=9.25=225\)

\(\Rightarrow\)\(AC=\sqrt{225}=15\)

     Áp dụng hệ thức lượng ta có:

              \(AB.AC=AH.BC\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}\)

\(\Rightarrow\)\(AH=\frac{20.15}{25}=12\)

10 tháng 7 2018

MÌNH CẦN BÀI 2 BÀI 1 ĐƯỢC RỒI 

Sửa đề: BC=10cm

a: AC=8cm

Xét ΔABC vuông tại A có sin B=AC/BC=4/5

nên góc B=53 độ

=>góc C=37 độ

b: \(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)

\(BH=\dfrac{6^2}{10}=3.6\left(cm\right)\)

CH=BC-BH=6,4cm

c: AM=BC/2=5cm

\(HM=\sqrt{5^2-4.8^2}=1.4\left(cm\right)\)

\(S=\dfrac{1.4\cdot4.8}{2}=3.36\left(cm^2\right)\)

 

NV
7 tháng 9 2021

Trong tam giác vuông ABC:

\(cosB=\dfrac{AB}{BC}\Rightarrow AB=BC.cosB\)

Trong tam giác vuông ABH:

\(sinB=\dfrac{AH}{AB}\Rightarrow AH=AB.sinB=BC.sinB.cosB=6.sin55^0.cos55^0\approx2,8\left(cm\right)\)

\(cosB=\dfrac{BH}{AB}\Rightarrow BH=AB.cosB=BC.\left(cosB\right)^2=6.\left(cos55^0\right)^2\approx1,2\left(cm\right)\)

\(CH=BC-BH=6-1,2=4,8\left(cm\right)\)

NV
7 tháng 9 2021

undefined

29 tháng 9 2017

  Áp dụng hệ thức lượng trong tam giác : 
AB.AC = BC.AH 
<=> AB.AC = 25.12 
<=> AB.AC = 300 

Áp dụng công thức Pytago : 
AB² + AC² = BC² 
<=> AB² + AC² = 25² = 625 

Ta có hệ pt : 
{ AB.AC = 300 
{ AB² + AC² = 625 

{ AB = 300/AC 
{ (300/AC)² + AC² = 625 

{ AB = 300/AC 
{ 90000/AC² + AC² = 625 

{ AB = 300/AC 
{ 90000 + AC^4 - 625AC² = 0 

Đặt t = AC² ( t ≥ 0 ) 

<=> t² - 625t + 90000 = 0 

<=> t = 400 ( chọn ) 
<=> t = 225 ( chọn ) 

<=> AC = 20 => AB = 300/AC = 300/20 = 15 
<=> AC = 15 => AB = 300/AC = 300/15 = 20 

Nếu AC = 20 ; AB = 15 
Ta có BH = AB² / BC = 15² / 25 = 9 

Nếu AC = 15 ; AB = 20 
Ta có BH = AB² / BC = 20² /25 = 16