K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

A B C N D F I K O

a) +) Ta có: IB, IK là 2 tiếp tuyến kẻ từ I

=> IO là tia phân giác \(\widehat{BIK}\)=->\(\widehat{BIO}=\frac{1}{2}\widehat{KIB}\)(1)

Tương tự: \(\widehat{IBO}=\frac{1}{2}\widehat{IBC}\)(2)

+) ND cùng vuông góc với IK và BC 

=> IK//BC

=> \(\widehat{KIB}+\widehat{IBC}=180^o\)(3)

Từ (1), (2), (3)

=> \(\widehat{IBO}+\widehat{BIO}=90^o\)=> \(\widehat{IBO}=90^o\)

+) Xét 2 tam giác vuông INO và ODB có:

\(\widehat{ION}=\widehat{OBD}\)( cùng phụ với góc BOD)

=> \(\Delta INO~\Delta ODB\)

=> \(\frac{IN}{OD}=\frac{ON}{BD}\)=> \(IN.BD=R^2\)( với R là bán kính đường tròn (O)) (4)

Tương tự ta cũng chứng minh được: \(NK.DC=R^2\)(5)

(4), (5)=> \(IN.BD=NK.DC\Rightarrow\frac{IN}{NK}=\frac{DC}{BD}\)(6)

b) IK//BC. Theo định lí Thaslet ta có:

\(\frac{IN}{BE}=\frac{NK}{EC}\left(=\frac{AN}{AE}\right)\Rightarrow\frac{IN}{NK}=\frac{BE}{EC}\)(7)

(6),(7)=> \(\frac{DC}{DB}=\frac{BE}{EC}\Rightarrow\frac{BC-BD}{DB}=\frac{BC-EC}{CE}\Rightarrow\frac{BC}{BD}-1=\frac{BC}{CE}-1\Rightarrow\frac{BC}{BD}=\frac{BC}{CE}\Rightarrow BD=CE\)

a: góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

b: góc EDH=góc BAF

góc FDH=góc ECB

mà góc BAF=góc ECB

nên góc EDH=góc FDH

=>DH là phân giác của góc EDF

a: Xét tứ giác ADHE có

góc AdH+góc AEH=180 độ

=>ADHElà tứ giác nội tiếp

I là trung điểm của AH

b: Xét tứ giác BEDC có

góc BEC=góc BDC=90 độ

=>BEDC là tứ giác nội tiếp

góc EDB=góc BAF

góc FDB=góc ECB
mà góc BAF=góc ECB

nên góc EDB=góc FDB

=>DB là phân giác của góc EDF

26 tháng 1 2023

và KH/HF=DK/DF đc ko bạn câu b)

8 tháng 8 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy HA là tiếp tuyến của đường tròn (O)

23 tháng 1 2020

1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)

 ~~~~~~~~~ Bài làm ~~~~~~~~~

A B C O I K H Q D

Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))

\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)

Ta lại có: \(BD\perp HK\)

\(\Rightarrow BD\) là đường trung trực của \(HK\)

\(\Rightarrow\Delta IHK\) cân tại \(I\)

\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)

Lại có:\(\widehat{DKO}=\widehat{HAO}\)\(\Delta OKA\) cân tại \(O\))

Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)

\(\Rightarrow\widehat{KIO}=90^0\)

\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)

(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )

24 tháng 1 2020

Ủa bạn ơi sao phụ nhau? Dòng đầu ấy