K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
SB
0
2 tháng 7 2015
Bài 1 :
Kẻ dường thẳng x đi qua trung điểm H của ED và BC => cần chứng minh x⊥ED
Lấy điểm I trên x sao cho DI=EI ( I nằm trên nửa mặt chứa A bờ ED )
=>ΔIEH = ΔIDH (= c.c.c)
=>EHI=IHD=180o : 2=90o
=>đpcm
. xét tam giác ABD và tam giác ACE có
. A là góc chung .
. góc E = góc D = 90 độ (gt)
.AB=AC(gt)
=> tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn )
=> BD = CE ( 2 cạnh tương ứng )
b/
Ta có : góc B = góc C ( tam giác ABC cân )
Mà góc B = B1 + B2
C= C1 + C2
Ta lại có : B1 = C1( tam giác ABD = tam giác ACE) ; góc B= góc C
=> góc B2 = C2
=> tam giác BHC cân tại B
c/
ta có : AB= AC ( tam giác ABC cân )
=> A thuộc đường trung trực của BC (1)
Ta lại có : HB=HC (tam giác BHC cân )
=> H thuộc đường trung trực của BC (2)
từ (1) và (2) suy ra : AH là đường trung trực của BC .
( Đường trung trực là đường đi qua trung điểm và cách đều 2 đầu mút của điểm đó )
CÂU D MÌNH KHÔNG BIẾT !!! XIN LỖI NHA .
a). Xét tam giác ABD và tam giác ACE có
. A là góc chung .
. Góc E = góc D = 90 độ (gt)
.AB=AC(gt)
=> tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn )
=> BD = CE ( 2 cạnh tương ứng )
b) Ta có : góc B = góc C ( tam giác ABC cân )
Mà góc B = B1 + B2
C= C1 + C2
Ta lại có : B1 = C1( tam giác ABD = tam giác ACE) ; góc B= góc C
=> góc B2 = C2
=> tam giác BHC cân tại B
c) Ta có : AB= AC ( tam giác ABC cân )
=> A thuộc đường trung trực của BC (1)
Ta lại có : HB=HC (tam giác BHC cân )
=> H thuộc đường trung trực của BC (2)
Từ (1) và (2) suy ra : AH là đường trung trực của BC .
( Đường trung trực là đường đi qua trung điểm và cách đều 2 đầu mút của điểm đó )