Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE∼ΔACF(g-g)
a) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat{AEB}=\widehat{AFC}\)
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABE\sim\Delta ACF\left(gn\right)\)
b) Vì \(\Delta ABE\sim\Delta ACF\)
\(\Rightarrow\widehat{ABE}=\widehat{ACF}\left(1\right)\)
Theo bài ra, ta có: AB // d
\(\Rightarrow\widehat{ABE}=\widehat{BED}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\widehat{ACF}=\widehat{BED}\)
Xét \(\Delta HED\) và \(\Delta HEC\) có:
\(\widehat{BED}=\widehat{ACF}\)
\(\widehat{EHC}\) chung
\(\Rightarrow\Delta HED\sim\Delta HEC\left(g-g\right)\)
\(\Rightarrow\dfrac{HE}{HD}=\dfrac{HC}{HE}\)
\(\Leftrightarrow HE^2=HD.HC\)
Mình bổ sung câu c nha
Xét tứ giác HBDC có
BH // DC (GT)
HC // BD (GT)
\(\Rightarrow\) HBDC là hình bình hành
Mà I là trung điểm của BC
\(\Rightarrow\) I là trung điểm của HD
\(\Rightarrow\) 3 điểm H,I,D thẳng hàng
a, Xét \(\Delta ABEv\text{à}\Delta ACF\)
\(AEB=\text{AF}C\left(=90^o\right)\)
\(BAE=FAC\) (góc chung)
\(\Rightarrow\Delta ABE~\Delta ACF\left(g.g\right)\)
b,Từ \(\Delta ABE~\Delta ACF\) (chứng minh trên)
\(\Rightarrow\frac{AB}{AC}=\frac{AE}{\text{AF}}\Rightarrow\frac{\text{AF}}{AC}=\frac{AE}{AB}\)
Xét \(\Delta AEFva\Delta ABC\)
\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)
\(EAF=BAC\) (Góc chung)
\(\Rightarrow\Delta AEF~\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\frac{AE}{AB}=\frac{\text{EF}}{BC}\Rightarrow AE.BC=AB.\text{EF}\)