K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2019

A B C P A' B' C'

Có : \(\frac{BC}{PA'}+\frac{CA}{PB'}+\frac{AB}{PC'}=\frac{BC^2}{PA'.BC}+\frac{CA^2}{PB'.CA}+\frac{AB^2}{PC'.AB}\)

                                                 \(=\frac{BC^2}{2S_{BPC}}+\frac{CA^2}{2S_{CPA}}+\frac{AB^2}{2S_{ABP}}\)

Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)được

\(\frac{BC}{PA'}+\frac{CA}{PB'}+\frac{AB}{PC'}\ge\frac{\left(AB+BC+CA\right)^2}{2S_{ABC}}=\frac{P_{ABC}^2}{2S_{ABC}}=const\:\)

Dấu "=" khi 3 cái phân số chứa mẫu là S kia bằng nhau <=> PA' = PB' = PC'

                                                                                         <=> P là tâm đường tròn nội tiếp tam giác ABC 

9 tháng 12 2016

A B C C' B' P A' M N

24 tháng 1 2022

Tham khảo nha e :))

Cho tam giác ABC vuông cân tại A. Một điểm P nằm trong tam giác biết PA=1,PB=căn 2,PC=2. Tính góc APB câu hỏi 160453 - hoidap247.com

E tưởng phải có a/c CTV nào giải hộ chứ:)

Đây là định lí ceva, bạn có thể tham khảo thêm các cách chứng minh khác trên mạng nếu cần.

undefined