K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

hình các bn tự vẽ nhé(mog các bn thông cảm máy mk ko vẽ dc hình)

a,             Xét tam giác BDA và tam giác MDA,có

                      AD cạnh chung

                   góc BAD=góc MAD (vì AD là tia phân giác của góc A)

                   BA=MA(gt)

            Do đó tam giác BDA= tam giác MDA(c-g-c)

   Suy ra BD=MD(2 cạnh tương ứng)

b,

TA có :góc ABD+góc DBE= 180 độ

           góc AMD + góc DMC =180 độ

Mà góc ABD= góc AMD (cmt)

suy ra góc DBE= góc DMC

                  Xét tam giác BDE và tam giác MDC ,có:

                                góc BDE=góc MDC(2 góc đối đỉnh)

                              BD=MD(cmt)

                              góc  DBE= góc DMC(cmt)

                   Do đó tam giác BDE =tam giác MDC (g-c-c)

s c,d mk đang nghĩ chưa ra kết quả khi nào ra mk giải tiếp heheh thông cảm

18 tháng 4 2018

ko biết

sorry , I don 't no

Kb nhé

7 tháng 5 2019

TAO XIN THE LA TAO EO BIET!!!!!!!!!!!!!11

a) Xét ΔABD có AB=AD(gt)

nên ΔABD cân tại A(Định nghĩa tam giác cân)

Ta có: ΔABD cân tại A(cmt)

mà AH là đường trung tuyến ứng với cạnh đáy BD(H là trung điểm của BD)

nên AH là đường cao ứng với cạnh BD(Định lí tam giác cân)

⇒AH⊥BD(đpcm)

3 tháng 4

Xét ∆ABD có: AD < AB + BD (bất đẳng thức tam giác) (1)

Xét ∆ACD có AD < AC + DC (bất đẳng thức tam giác) (2)

 

Cộng theo vế của (1) và (2) ta có:

AD + AD < AB + BD + AC + DC

2AD < AB + AC + (BD + DC)

2AD < AB +AC +BC

Suy ra: AD<AB+AC+BC2��<��+��+��2

Mà AB+AC+BC2��+��+��2 là chu vi của tam giác ABC.

Vậy AD luôn nhỏ hơn nửa chu vi của tam giác ABC.

Sửa đề: Bỏ D là trung điểm của BC và bỏ luôn góc D vuông

a) Sửa đề: Chứng minh ΔABD=ΔACD

Xét ΔABD vuông tại D và ΔACD vuông tại D có 

AB=AC(ΔABC đều)

AD chung

Do đó: ΔABD=ΔACD(cạnh huyền-cạnh góc vuông)

Suy ra: BD=CD(hai cạnh tương ứng)

b) Ta có: AB=BC(ΔABC đều)

mà BC=6cm(gt)

nên AB=6cm

Ta có: BD=CD(cmt)

mà BD+CD=BC(D nằm giữa B và C)

nên \(BD=CD=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:

\(AB^2=AD^2+BD^2\)

\(\Leftrightarrow AD^2=AB^2-BD^2=6^2-3^2=27\)

hay \(AD=3\sqrt{3}cm\)

Vậy: \(AD=3\sqrt{3}cm\)

c) Ta có: ΔABC đều(gt)

nên \(\widehat{C}=60^0\)

Ta có: BD=DC(cmt)

mà D nằm giữa B và C(gt)

nên D là trung điểm của BC

hay \(CD=\dfrac{BC}{2}\)(1)

Ta có: E là trung điểm của AC(gt)

nên \(CE=\dfrac{AC}{2}\)(2)

Ta có: ΔABC đều(gt)

nên BC=AC(3)

Từ (1), (2) và (3) suy ra CE=CD

Xét ΔCED có CE=CD(cmt)

nên ΔCED cân tại C(Định nghĩa tam giác cân)

Xét ΔCED cân tại C có \(\widehat{C}=60^0\)(cmt)

nên ΔCED đều(Dấu hiệu nhận biết tam giác đều)

d) Xét ΔCAB có 

D là trung điểm của BC(cmt)

E là trung điểm của AC(gt)

Do đó: DE là đường trung bình của ΔCAB(Định nghĩa đường trung bình của tam giác)

hay DE//BA(Định lí 2 về đường trung bình của tam giác)

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0