K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

\(a,\) \(\overrightarrow{IA}=2\overrightarrow{IB}-4\overrightarrow{IC}\)

\(\overrightarrow{IA}=2\overrightarrow{IB}-2\overrightarrow{IC}-2\overrightarrow{IC}=2\overrightarrow{CB}-2\overrightarrow{IC}\)

\(=2\left(\overrightarrow{AB}-\overrightarrow{AC}\right)-2\left(\overrightarrow{AC}-\overrightarrow{AI}\right)\)

\(\overrightarrow{IA}=2\overrightarrow{AB}-2\overrightarrow{AC}-2\overrightarrow{AC}+2\overrightarrow{AI}\)

\(\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}\)

\(b,\overrightarrow{IJ}=\overrightarrow{AJ}-\overrightarrow{AI}=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}=\dfrac{4}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(1\right)\)

\(\overrightarrow{JG}=\overrightarrow{AG}-\overrightarrow{AJ}=\dfrac{2}{3}\overrightarrow{AM}-\dfrac{2}{3}\overrightarrow{AB}\)\((\) \(\) \(M\)  \(trung\) \(điểm\) \(BC)\)

\(\overrightarrow{JG}=\dfrac{\overrightarrow{AB}+\overrightarrow{AC}}{3}-\dfrac{2}{3}\overrightarrow{AB}=-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=-\dfrac{1}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\overrightarrow{IJ}=-4\overrightarrow{JG}\Rightarrow I,J,G\) \(thẳng\) \(hàng\)

4 tháng 1 2021

Gt ⇒ \(2\left|\overrightarrow{MC}+\overrightarrow{MA}+\overrightarrow{MB}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)

Do G là trọng tâm của ΔABC

⇒ \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\)

⇒ VT = 6MG

I là trung điểm của BC

⇒ \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\)

⇒ VP = 6MI

Khi VT = VP thì MG = MI

Vậy tập hợp các điểm M thỏa mãn ycbt là đường trung trực của đoạn thẳng IG

 

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

\(\overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \left( {\overrightarrow {MO}  + \overrightarrow {OD} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OE} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OF} } \right)\)

Qua M kẻ các đường thẳng \({M_1}{M_2}//AB;{M_3}{M_4}//AC;{M_5}{M_6}//BC\)

Từ đó ta có: \(\widehat {M{M_1}{M_6}} = \widehat {M{M_6}{M_1}} = \widehat {M{M_4}{M_2}} = \widehat {M{M_2}{M_4}} = \widehat {M{M_3}{M_5}} = \widehat {M{M_5}{M_3}} = 60^\circ \)

Suy ra các tam giác \(\Delta M{M_3}{M_5},\Delta M{M_1}{M_6},\Delta M{M_2}{M_4}\) đều

Áp dụng tính chất trung tuyến \(\overrightarrow {AM}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\)(với M là trung điểm của BC) ta có:

\(\overrightarrow {ME}  = \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_6}} } \right);\overrightarrow {MD}  = \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_4}} } \right);\overrightarrow {MF}  = \frac{1}{2}\left( {\overrightarrow {M{M_3}}  + \overrightarrow {M{M_5}} } \right)\)

\( \Rightarrow \overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_4}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_6}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_3}}  + \overrightarrow {M{M_5}} } \right)\)

Ta có: các tứ giác \(A{M_3}M{M_1};C{M_4}M{M_6};B{M_2}M{M_5}\) là hình bình hành

Áp dụng quy tắc hình bình hành ta có

\(\overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_4}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_6}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_3}}  + \overrightarrow {M{M_5}} } \right)\)

\( = \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_3}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_5}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_4}}  + \overrightarrow {M{M_6}} } \right)\)

\( = \frac{1}{2}\overrightarrow {MA}  + \frac{1}{2}\overrightarrow {MB}  + \frac{1}{2}\overrightarrow {MC}  = \frac{1}{2}\left( {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right)\)

\( = \frac{1}{2}\left( {\left( {\overrightarrow {MO}  + \overrightarrow {OA} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OB} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OC} } \right)} \right)\)

\( = \frac{1}{2}\left( {3\overrightarrow {MO}  + \left( {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right)} \right) = \frac{3}{2}\overrightarrow {MO} \) (đpcm)

Vậy \(\overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \frac{3}{2}\overrightarrow {MO} \)

15 tháng 12 2020

Có vẻ không đúng.

Giả sử \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow M\equiv B\) (Vô lí)

15 tháng 12 2020

Đề đúng đó bạn ơi Hồng Phúc CTV

Đây là đề thi học kì năm ngoái của trường mình mà.