Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sorry mn nhé, mn thay dấu = thành và đc k ak, mk vt nhầm nhé, sorry mina nh!!!
a) Ta có: M là trung điểm của AD (gt) (1)
Mà P' là điểm đối xứng của P qua M (gt)
\(\Rightarrow M\)cũng là trung điểm của PP' (2)
Từ (1), (2) \(\Rightarrow APDP'\)là hình bình hành (3)
Từ (3) \(\Rightarrow\) PA = P'D (4)
Từ (3) \(\Rightarrow PA\) // P'D
\(\Rightarrow\) PC // P'D (5)
Mà DB = DC (6)
Từ (5), (6) \(\Rightarrow\) P'D là đường trung bình của \(\Delta BPC\)
\(\Rightarrow\) P'D = \(\dfrac{1}{2}PC\) (7)
Từ (4), (7) \(\Rightarrow\) PA = \(\dfrac{1}{2}PC\) (8)
\(\Leftrightarrow\dfrac{PA}{PC}=\dfrac{1}{2}\)
Từ (8) \(\Rightarrow\) PC = 2PA (9)
Từ (4), (9) \(\Rightarrow\) PA + PC = PA + 2PA
\(\Leftrightarrow AC=3PA\)
\(\Leftrightarrow\dfrac{PA}{AC}=\dfrac{1}{3}\)
Vậy \(\dfrac{PA}{PC}=\dfrac{1}{2}\) và \(\dfrac{PA}{AC}=\dfrac{1}{3}\)
a: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao và AM là phân giác của \(\widehat{BAC}\)
Xét tứ giác APMQ có
AP//MQ
AQ//MP
Do đó: APMQ là hình bình hành
Hình bình hành APMQ có AM là phân giác của góc PAQ
nên APMQ là hình thoi
b: Xét ΔABC có
M là trung điểm của BC
MP//AC
Do đó: P là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MQ//AB
Do đó: Q là trung điểm của AC
Xét ΔABC có
P,Q lần lượt là trung điểm của AB,AC
=>PQ là đường trung bình của ΔABC
=>PQ//BC
c: Xét ΔABC có M,Q lần lượt là trung điểm của CB,CA
=>MQ là đường trung bình của ΔABC
=>MQ//AB và \(MQ=\dfrac{AB}{2}\)
mà \(MQ=\dfrac{MD}{2}\)
nên MD=AB
MQ//AB
=>MD//AB
Xét tứ giác ABMD có
AB//MD
AB=MD
Do đó: ABMD là hình bình hành
d: Xét tứ giác AMCD có
Q là trung điểm chung của AC và MD
Do đó: AMCD là hình bình hành
Hình bình hành AMCD có \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
Hình chữ nhật AMCD muốn trở thành hình vuông thì CA là phân giác của góc MCD
=>\(\widehat{ACB}=\dfrac{1}{2}\cdot90^0=45^0\)
a: Xét tứ giác AKMN có
MN//AK
AN//MK
Do đó: AKMN là hình bình hành
mà \(\widehat{NAK}=90^0\)
nên AKMN là hình chữ nhật
b: Xét ΔAMQ có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAMQ cân tại A
mà AN là đường cao
nên AN là tia phân giác của góc MAQ(1)
Xét ΔAME có
AK là đường cao
AK là đường trung tuyến
DO đó: ΔAME cân tại A
mà AK là đường cao
nên AK là tia phân giác của góc MAE(2)
Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)
hay Q,E,A thẳng hàng