Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Goi G là giao điểm của 2 đường trung tuyến CE và BD ta có GD = 1/2 BG và EG = 1/2 CG [Vì theo tính chất của trung tuyến tại giao điểm G, của 3 đường ta có G chia đường trung tuyến ra làm 2 phần, phần này gấp đôi phần kia.]
Áp dụng định lý pythagore vào tam giác vuông BGE ta có:
BG^2 = EB^2 - EG^2 = 9 - EG^2 = 9 - (1/2. GC)^2 (1)
Áp dụng định lý pythagore vào tam giác vuông CGD ta có:
GC^2 = CD^2 - GD^2 = 16 - GD^2 = 16 - (1/2BG)^2 (2)
mặt khác BC^2 = BG^2 + GC^2. Do đó từ (1) và (2) ta có:
BC^2 = 9 -1/4 GC^2 + 16 - 1/4 BG^2 = 25 - 1/4(GC^2 + BG^2)
<=> BC^2 + 1/4(GC^2 + BG^2) = 25 <=> BC^2 + 1/4BC^2 = 25 <=> 5/4BC^2 = 25 <=>
BC^2 =25. 4/5 = BC^2 =20 <=> BC = căn 20 <=>
BC = 2.(căn 5) cm
Vì \(\Delta\)GDC vuông tại G nên theo định lý Py-ta-go ta có
\(DC^2=GD^2+GC^2\)(3)
Từ (1),(2) và (3) ta có
\(BC^2=EB^2-EG^2+DC^2-GD^2=\left(\frac{AB}{2}\right)^2-EG^2+\left(\frac{AC}{2}\right)^2-GD^2\)
\(\Rightarrow BC^2=\left(\frac{6}{2}\right)^2-EG^2+\left(\frac{8}{2}\right)^2-GD^2=3^2+4^2-\left(EG^2+GD^2\right)=25-\left(EG^2+GD^2\right)\)(4)
Mà ta có ED là đường trung bình của \(\Delta ABC\) nên ta có \(ED=\frac{BC}{2}\) (5)
Vì \(\Delta EDG\) vuông tại G nên áp dụng định lý Py-ta-go ta có
\(ED^2=GD^2+EG^2\) (6)
Từ (4),(5) và (6) ta có
\(BC^2=25-ED^2=25-\left(\frac{BC}{2}\right)^2=25-\frac{BC^2}{4}=\frac{100-BC^2}{\text{4}}\)
\(\Rightarrow\text{4BC^2}=100-BC^2\)
\(\Leftrightarrow5BC^2=100\)
\(\Leftrightarrow BC^2=20\)
\(\Leftrightarrow BC=\sqrt{20}\)(cm)
Vậy \(BC=\sqrt{20}cm\)
Các đường trung tuyến BD và CE vuông góc với nhau nên tam giác ABC vuông tại A
=> BC^2 = AB^2 + AC^2
=> BC^2 = 6^2 + 8^2
=> BC = 10 cm
Goi G là giao điểm của 2 đường trung tuyến CE và BD ta có GD = 1/2 BG và EG = 1/2 CG [Vì theo tính chất của trung tuyến tại giao điểm G, của 3 đường ta có G chia đường trung tuyến ra làm 2 phần, phần này gấp đôi phần kia.]
Áp dụng định lý pythagore vào tam giác vuông BGE ta có:
BG^2 = EB^2 - EG^2 = 9 - EG^2 = 9 - (1/2. GC)^2 (1)
Áp dụng định lý pythagore vào tam giác vuông CGD ta có:
GC^2 = CD^2 - GD^2 = 16 - GD^2 = 16 - (1/2BG)^2 (2)
mặt khác BC^2 = BG^2 + GC^2. Do đó từ (1) và (2) ta có:
BC^2 = 9 -1/4 GC^2 + 16 - 1/4 BG^2 = 25 - 1/4(GC^2 + BG^2)
<=> BC^2 + 1/4(GC^2 + BG^2) = 25 <=> BC^2 + 1/4BC^2 = 25 <=> 5/4BC^2 = 25 <=>
BC^2 =25. 4/5 = BC^2 =20 <=> BC = căn 20 <=>
BC = 2.(căn 5) cm
tam giác ABC, hai đường trung tuyến BD và CE vuông góc với nhau. Biết AB=5 và AC=10. Tính cạnh BC= ?
AE = BE = 2,5 ; AD = DC = 5
Gọi CE giao BD tại G
Đặt GE = x ; GD = y => GC = 2x ; GB = 2y
Tam giác GBE vt G có x^2 + 4y^2 = 2,5^2 (1)
Tam giác GDC v tại G => y^2 + 4x^2 = 5^2 (2)
Từ (1) và (2) => 5 (x^2 + y^2 ) = 2.5^2 + 5^2 => x^2 + y^2 = ....
Tam giác BGC v tại G => 4x^2 + 4y^2 = BC^2
<=> 4(x^2 + y^2 ) = BC^2 => BC = ...
Gọi H là giao điểm 2 đường trung tuyến BD và CE
=> H là trọng tâm trong tam giác ABC (vì là giao điểm 2 đường trung tuyến)
Ta có: BE = 3 , CD = 4
Áp dụng Py-ta -go ta được:
DH2 + CH2 = CD2 = 42 = 16 (1)
EH2 + BH2 = BE2 = 32 = 9 (2)
Cộng (1) và (2) vế theo vế ta được: DH2 + CH2 + EH2 + BH2 = 16 + 9 = 25
mà \(HD=\frac{1}{2}HB;HE=\frac{1}{2}HC\) nên : \(\frac{HB^2}{4}+HC^2+\frac{HC^2}{4}+HB^2=25\)
\(\Rightarrow\frac{5}{4}HB^2+\frac{5}{4}HC^2=25\Rightarrow HB^2+HC^2=20\)
Hay BC2 = 20 (vì HB2 + HC2 = BC2) => BC = \(2\sqrt{5}\)
Vậy \(BC=2\sqrt{5}\)
Cho tam giác ABC, hai đường trung tuyến BD và CE vuông góc với nhau. Biết AB=5cm, AC=10cm.Vậy BC=?cm
goi G là gjao điểm của 2 trung tuyến BD ,CE.=>GB _|_ GC.khj đó điều pn cần làm là tính đk GB,GC==> phải tính đk BD,CE.
Kẻ đg cao BN ,CM của T.g ABC
Gọi V là gjao BN và CE
Gọi R là gjao CM và BD
khj đó,pn dễ dàng thấy B,M,G,N,C cùng nằm trên đg tròn đg kính BC.==>Góc GBV= GÓC GCD(1)
GÓC EBG= GÓC RCG (2) (Cák góc cùng chắn 1 dây cung)
==>tam gják BGV ~t.g CGD(g.g.g)
( góc BGV = góc CGD=90,và (1))
==>BV/CD=GV/GD=BG/CG=BD/CE
==>BV=CD.BD/CE (CD=AC/2=4 cm)
GV=GD.BD/CE =(BD/3).(BD/CE )
xét t.g vuông BGV( do G thuộk đg tròn đ.k BC) Ta có
BG^2+GV^2=BV^2
<==>BG ^2=BV^2-GV^2
Thay gjá trị ở trên có k.q
BG=[BD.Căn (16.9-BD^2)]/3CE
mà BG=2BD/3
==>BD^2+4CE ^2=16.9[3]
CMtương tự
xét 2 tam gják BGE ~ T.g CGR
==>4BD^2 + CE^2=81[4]
Giải hpt [3,4] pn tính đk
BD^2=12 , CE ^2=33
==>[BD^2+ CE ^2].[2/3]^2 = GB^2+GC^2 = BC^2 = 20 cm(do G là trọng tâm)
==> BC=2 Căn 5
Nguồn: cho tam giac abc co ab=6 ac=8, cac duong trung tuyen bd va ce vuong goc voi nhau. tinh bc??????? | Yahoo Hỏi & Đáp
BẠn nhầm đề bài rồi nha AB = 6 , AC = 8