K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

A B C M H

hinh ve chi mang tinh chat minh hoa

ta có :AC=AM nen => tam giac ACM can => AH cũng la trung tuyến=>CH=HM
lai co : tanC=AH/HC
         tanB=AH/HB
ma hb=3hc ( hb=hm+bm=hm+hm+hc=3hc )
=>  tanC/tanB=HB/HC=3
=>tan C=3 tan B

21 tháng 11 2016

Từ A vẽ đường cao AH của tam giác ABC, từ M vẽ đường thẳng vuông góc với BC cắt AC tại N, Ta có các biểu thức sau: 
tgC=AH/CH=AH/(1/4(BC))=4AH/BC (1) 
tgB=MN/MB=MN/(1/2(BC))=2MN/BC. (2) 
tgB/tg C=(2MN/BC)/(4AH/BC)= MN/2AH (3) 
Theo định lý Talet thì MN/AH=2/3 do đó thay MN=2AH/3 vào biểu thức (3) ta có 
tgB/tgC=1/3

7 tháng 7 2018

Gọi AH là đường cao của tam giác ABC (H thuộc BC)

Ta có : cot B=\(\dfrac{BH}{AH}\);cot C= \(\dfrac{CH}{AH}\) . Theo giả thiết : cot B=3 cot C ⇒ BH = 3CH

Mà BH + CH = BC⇒ BC= 4CH⇒ CH= \(\dfrac{BC}{4}\) = \(\dfrac{2CM}{4}\) = \(\dfrac{CM}{2}\)

Vậy CH = \(\dfrac{1}{2}\) CM

Ta cũngcó: BH = BM + MH = 2CH + MH = 3CH ⇒ MH = CH

Do đó AH là đường trung trực của CM => AC = AM (đpcm)

Hình bạn tự vẽ nha máy mình không vẽ được hình học

Chúc bạn mùa hè vui vẻ

8 tháng 7 2016

A C B H M

Gọi AH là đường cao của tam giác ABC (H thuộc BC)

Ta có : \(cotB=\frac{BH}{AH};cotC=\frac{CH}{AH}\) . Theo giả thiết : \(cotB=3cotC\Rightarrow BH=3CH\)

Mà BH + CH = BC\(\Rightarrow BC=4CH\Rightarrow CH=\frac{BC}{4}=\frac{2CM}{4}=\frac{CM}{2}\)

Vậy \(CH=\frac{1}{2}CM\); Ta cũng có : \(BH=BM+MH=2CH+MH=3CH\Rightarrow MH=CH\)

Do đó AH là đường trung trực của CM => AC = AM (đpcm)

AM sao có thể bằng AC đc? Đề có vấn đề j ko bn?

\(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)

=>AM=6,5cm

sin B=AC/BC=12/13

=>góc B=68 độ

=>góc C=22 độ

14 tháng 5 2023

bc=√5\(^2\)+12\(^2\)=13(cm)

=>AM=6,5cm

sin B=AC/BC=12/13

=>góc B=68 độ

=>góc C=22 độ