K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

21 tháng 8 2019

A B C D G I

a) Gọi I là trung điểm BC

Lấy D đối xứng với G qua I => I là trung điểm GD

=> Tứ giác BGCD là hình bình hành

\(\Rightarrow\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GD}\\ \Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GA}+\overrightarrow{GD}\\\Rightarrow \overrightarrow{GA}+\overrightarrow{GD}=0\\ \Rightarrow G\text{ là trung điểm }AD\\ \Rightarrow GI=\frac{1}{2}GD=\frac{1}{2}AG\\ \Rightarrow AG=2GI\\ \Rightarrow\frac{1}{2}AG+AG=AG+GI\\ \Rightarrow\frac{3}{2}AG=AI\\ \Rightarrow AG=\frac{2}{3}AI\)

=> G là trọng tâm \(\Delta ABC\)

\(\text{b) }\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\\ =3\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\\ =3\overrightarrow{MG}+0=3\overrightarrow{MG}\)

17 tháng 12 2023

Ta có:

\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{MB}+4\overrightarrow{MC}\)

          \(=6\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}+4\overrightarrow{IC}\)

          \(=6\overrightarrow{MI}+4\overrightarrow{IG}+4\overrightarrow{IC}\)

          \(=6\overrightarrow{MI}\)

\(\Rightarrow M,I,N\) thẳng hàng

22 tháng 10 2023

a: Gọi M là trung điểm của AB

Xét ΔABC có

G là trọng tâm

M là trung điểm của AB

Do đó: CG=2/3CM

=>CG=2GM

=>\(\overrightarrow{CG}=2\overrightarrow{GM}\)

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\)

\(=2\overrightarrow{GM}+\overrightarrow{GC}\)

\(=\overrightarrow{CG}+\overrightarrow{GC}=\overrightarrow{0}\)

b: \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)

\(=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\)

\(=3\cdot\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(=3\cdot\overrightarrow{MG}\)

18 tháng 10 2021

undefined

NV
21 tháng 12 2022

Từ giả thiết ta có PN là đường trung bình tam giác ABC

\(\Rightarrow\overrightarrow{PN}=\dfrac{1}{2}\overrightarrow{BC}=\overrightarrow{BM}\)

Do đó:

\(\overrightarrow{BM}+\overrightarrow{NC}=\overrightarrow{PN}+\overrightarrow{NC}=\overrightarrow{PC}\)

b.

Theo tính chất trọng tâm: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}=\dfrac{2}{3}\left(\overrightarrow{AG}+\overrightarrow{GM}\right)\)

\(\Rightarrow\dfrac{1}{3}\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{GM}\Rightarrow2\overrightarrow{MG}=-\overrightarrow{AG}=\overrightarrow{GA}\)

\(\Rightarrow\overrightarrow{GB}+\overrightarrow{GC}+2\overrightarrow{MG}=\overrightarrow{GC}+\overrightarrow{GB}+\overrightarrow{GA}=\overrightarrow{0}\)

21 tháng 12 2022

Thầy ơi giúp em 1 câu hỏi nữa được không thầy