K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2018

Ta theo định nghĩa : Tổng ba góc của một tam giác bằng 1800

Ta gọi các góc A,B,C lần lượt là : c,n,l

Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\dfrac{c}{\dfrac{2}{1}}=\dfrac{n}{\dfrac{3}{1}}=\dfrac{l}{\dfrac{5}{2}}=\dfrac{180}{\dfrac{2}{1}+\dfrac{3}{1}+\dfrac{5}{2}}=24\)

Từ đó suy ra : c = 24*\(\dfrac{2}{1}\)=48

n=24*\(\dfrac{3}{1}\)=72

l=24*\(\dfrac{5}{2}\)=60

Vậy các góc tam giác ABC lần lượt bằng : 48;72;60

Chúc hk giỏi

Bài làm

Gọi số đo của ba góc A, B, C lần lượt là x, y, z

Mà số đo của các góc lần lượt tỉ lệ với \(\frac{1}{2};\frac{1}{3};\frac{2}{5}\)

=> \(x.\frac{1}{2}.\frac{1}{30}\)\(x.\frac{1}{3}.\frac{1}{30}\)=\(x.\frac{2}{5}.\frac{1}{30}\)

=> \(\frac{x}{60}\)\(\frac{y}{90}\)\(\frac{z}{75}\)

Vì theo định lí, tổng ba góc của tam giác là 180o

=> x + y + z = 180o

Áp dụng tính chất dãy tỉ số bằng nhau:

Ta có: \(\frac{x}{60}=\frac{y}{90}=\frac{z}{75}=\frac{x+y+z}{60+90+75}=\frac{180}{225}=\frac{36}{45}=\frac{4}{5}\)

Do đó: \(\hept{\begin{cases}\frac{x}{60}=\frac{4}{5}\\\frac{y}{90}=\frac{4}{5}\\\frac{z}{75}=\frac{4}{5}\end{cases}}\Rightarrow\hept{\begin{cases}x=48\\y=72\\z=60\end{cases}}\)

Vậy độ dài của góc A là 48o

       độ dài của góc B là 72o

       độ dài của góc C là 60o

# Chúc bạn học tốt #

9 tháng 8 2016

TRỜI ! MỘT BÀI TOÁN BÙ ĐẦU BÙ ÓC

11 tháng 8 2016

bài này lóp 7 hoc rù nhung quyen lop 7 nhình học giỏi lám đó

9 tháng 12 2016

1/Tính

\(\left(\frac{3}{7}\right)^{20}:\left(\frac{9}{49}\right)^5\)

\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3^2}{7^2}\right)^5\)

\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3}{7}\right)^{10}\)

\(=\left(\frac{3}{7}\right)^{10}\)

2/ Ta có:A+B+C = 180 độ ( tổng 3 góc tam giác)

Và : \(A.\frac{1}{2}=B.\frac{1}{3}=C.\frac{2}{5}\)

hay \(\frac{A}{\frac{2}{1}}=\frac{B}{\frac{3}{1}}=\frac{C}{\frac{5}{2}}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{A}{\frac{2}{1}}=\frac{B}{\frac{3}{1}}=\frac{C}{\frac{5}{2}}=\frac{A+B+C}{\frac{2}{1}+\frac{3}{1}+\frac{5}{2}}=\frac{180}{\frac{15}{2}}=24\)

=> \(A=24.\frac{2}{1}=48\)độ

     \(B=24.\frac{3}{1}=72\)độ

      \(C=24.\frac{5}{2}=60\)độ

`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`

Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`

`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`

`-> x+y+z=180`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`

`-> x/2=y/3=z/4=20`

`->x=20*2=40, y=20*3=60, z=20*4=80`

Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`

a:

Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)

a/2=b/3=c/4

b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20

=>a=40; b=60; c=80

8 tháng 12 2021

-tổng 3 góc của 1 tam giác=180

-gọi ^A,^B,^C lần lượt là x,y,z

-áp dụng tính chất dãy tỉ số bằng nhau:

x/1=y/2=z/3=x+y+z/1+2+3=180/6=30

suy ra:x/1=30 suy ra x=30

suy ra:y/2=30 suy ra y=60

suy ra:z/3=30 suy ra z=90

suy ra ^A=30o;^B=60o;^C=90o

8 tháng 12 2021

Theo bài toán ta có:

\(\dfrac{A}{1}\)\(=\)\(\dfrac{B}{2}\)\(=\)\(\dfrac{C}{3}\) và A\(+\)B\(+\)C\(=\)180°(vì tổng ba góc của một tam giác bằng 180°)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{A}{1}\)\(+\)\(\dfrac{B}{2}\)\(+\)\(\dfrac{C}{2}\)\(=\dfrac{A+B+C}{1+2+3}\)\(=\)\(\dfrac{180}{6}\)\(=\)30°

\(\Rightarrow\)\(\dfrac{A}{1}\)\(=\)30°. 1\(=\) 30°

    \(\dfrac{B}{2}\)\(=\) 30°. 2\(=\) 60°

     \(\dfrac{C}{3}\)\(=\)30°. 3\(=\)90°

Vậy số đo của ba góc A, B, C lần lượt là 30°, 60° và 90°