K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

bạn tự vẽ hình nhé !

Nối EN, NM, ME.  Ta có G là trọng tâm tam giác ABC nên G là giao điểm 3 đường trung tuyến , do đó E, G , C thẳng hàng.(1)

bây giờ chứng minh E,G,D thẳng hàng thì sẽ có C,G,E,D thẳng hàng.

Ta có E là trung điểm AB, N là trung điểm AC suy ra EN là đường trug bình tam giác ABC nên EN =1/2 BC và EN song2 với BC. lại có MC=1/2 BC ( M trug điểm BC)

suy ra EN = CM và EN song2 với CM từ đó ENCM là hình bình hành. 

Xét hình bình hành ENCM có D là trung điểm MN suy ra D là trug điểm EC => ED=DC.

Vì G là trọng tâm tam giác ABC nên EG=1/3 EC=2/3ED (vì ED=1/2 EC)

Xét tam gác ENM có ED là trung tuyến , EG=2/3 ED suy ra G là trọng âm tam giác ENM. suy ra EGD thẳng hàng (2)

TỪ 1 và 2 suy ra E,G,D,C thẳng hàng

17 tháng 10 2020

Gọi I là tâm hình bình hành MBDC, J là tâm hình bình hành MAED. G là giao điểm của AI và EM

Tứ giác MBDC là hình bình hành nên BI = IC và MI = ID

Tứ giác MAED là hình bình hành nên AJ = JD 

∆AMD có AI và MJ là hai đường trung tuyến cắt nhau tại G nên G là trọng tâm của ∆AMD => AG = 2/3AI

∆ABC có AI là đường trung tuyến và AG = 2/3AI nên G là trọng tâm của ∆ABC => G là điểm cố định

Vậy đường thẳng ME luôn đi qua một điểm cố định G (đpcm)

a: OM//AH

ON//BH

MN//AB

=>góc BAH=góc OMN và góc ABH=góc ONM

=>ΔABH đồng dạng vơi ΔMNO

b: G là trọng tâm của ΔABC

=>GM/GA=1/2

ΔABH đồng dạng với ΔMNO nên OM/AH=MN/AB=1/2

=>OM/AH=MG/AG

=>ΔHAG đồng dạng với ΔOMG

c: ΔHAG đồng dạng với ΔOMG

=>góc AGH=góc OGM và GH/GO=GA/GM=2

=>H,G,O thẳng hàng và GH=2GO

19 tháng 9 2019

A B C I G N M

Gọi giao điểm của BG với AC là M ;

CG với AB là N

Vì G là trọng tâm của  \(\Delta ABC\)

nên BM, CN, là trung tuyến

Mặt khác \(\Delta ABC\)  cân tại A

Nên BM = CN 

Ta có : \(GB=\frac{1}{2}BM;GC=\frac{2}{3}CN\)  (t/c trọng tâm của tam giác)

Mà  BM = CN nên GB = GC

Do đó : \(\Delta AGB=\Delta AGC\left(c.c.c\right)\)

\(\Rightarrow\widehat{BAG}=\widehat{CAG}\Rightarrow G\) thuộc phân giác của \(\widehat{BAC}\)

Mà \(\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\Rightarrow\widehat{BAI}=\widehat{CAI}\Rightarrow I\) thuộc phân giác của  \(\widehat{BAC}\)

Vì G, I cùng thuộc phân giác của  \(\widehat{BAC}\) nên A, G, I  thẳng hàng

Chúc bạn học tốt !!!

21 tháng 9 2017

bạn ghi mỗi bài 1 câu hỏi đi mà bạn làm thế này dài lắm

21 tháng 9 2017

Mình tách 3 bài riêng rồi đấy. Bạn có thể giúp mình làm 1 trong 3 bài ko hoặc cả 3 cũng đc

7 tháng 8 2023

a) Chứng minh BH//CD và BH=CD:

Vì O là giao điểm 3 đường trung trực nên O là tâm đường tròn ngoại tiếp tam giác ABC.
Vì A>90 nên tâm đường tròn ngoại tiếp tam giác ABC nằm ngoài tam giác ABC.
Vì H là trực tâm nên AH ⊥ BC và AH cắt BC tại D.
Vì O là trung điểm AD nên OD = AO.
Vì O là tâm đường tròn ngoại tiếp tam giác ABC nên OB = OC.
Từ đó suy ra OB = OC = OD = AO.
Vậy tứ giác OBCD là tứ giác nội tiếp.
Do đó, ta có: (BHCD) => ∠BHC + ∠BDC = 180°
Mà ∠BHC + ∠BDC = 90° + 90° = 180°
Vậy BH // CD và BH = CD.

b) Chứng minh M là trung điểm HD:

Vì OM ⊥ BC và H là trực tâm nên HM // BC.
Vì HM // BC và BH // CD nên HM // CD.
Do đó, ta có: (HMD) => ∠HMD + ∠HCD = 180°
Mà ∠HMD + ∠HCD = 90° + 90° = 180°
Vậy HM // CD và HM = CD/2.
Do đó, M là trung điểm HD.

c) Chứng minh H, G, O thẳng hàng:

Gọi E, F lần lượt là trung điểm của AB, AC.
Ta có: EG // HO và EG = (2/3)HO
Do đó, ta có: H, G, O thẳng hàng.

4 tháng 8 2023

tại sao lại là "Vì H là trực tâm nên AH ⊥ BC và AH cắt BC tại D." ạ

"H là trực tâm" rồi mà