K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2022

Sửa đề: M là trug điểm của AC

a: Xét tứ giác ABCE có

M là trung điểm chung của AC và BE

nên ABCE là hình bình hành

=>AB=CE

b: ABCE là hình bình hành

nên CE//AB

=>CE vuông góc với AC

23 tháng 11 2017

a/ xet tam giác AMK và tam giác CMB có:

AM=MC (GT)

góc AMK= góc CMB (đối đỉnh)

KM=MB(gt)

=> tam giac AMK= tam giác CMB (c.g.c)

b/ta có tam giác AMK= tam giác CMB (cmt)

=>góc K = góc B ( Hai góc tương ứng) mà lại có vị trí so le trong

=> AF// BC

=>AK=BC(2 cạnh tương ứng )

vì AK=BC và FA=AK

=>FA=BC(Cùng bằng AK)

21 tháng 6 2021

undefined

21 tháng 6 2021

undefined

27 tháng 2 2020

b1 : 

A B C I

tự cm tam giác ABC vuông

=> góc ABC + góc ACB = 90 (đl)

BI là pg của góc ABC => góc IBC = góc ABC : 2

CI là pg của góc ACB => góc ICB = góc ACB : 2

=> góc IBC + góc ICB = (góc ABC + góc ACB)  : 2

=> góc IBC + góc ICB = 45

xét tam giác IBC => góc IBC + góc ICB + góc BIC = 180

=> góc BIC = 135

12 tháng 10 2019

A B C M N D / / x x

Xét △AMD và △CMB

Có: AM = MC (M là trung điểm)

     AMD = CMB (2 góc đối đỉnh)

       MD = MB (gt)

=> △AMD = △CMB (c.g.c)

=> AD = BC (2 cạnh tương ứng)

b, Xét △ABM và △CDM

 Có: AM = MC (gt)

     BMA = CMD (2 góc đối đỉnh)

      MB = MD (gt)

=> △ABM = △CDM (c.g.c)

=> BAM = DCM (2 góc tương ứng)

Mà BAM = 90o

=> DCM = 90o

=> AC ⊥ CD

c, Vì BN // AC (gt)

=> BNC = ACD (2 góc đồng vị)

Mà ACD = 90o (câu b)

=> BNC = 90o

Xét tam giác BND vuông tại N có:

NM là đường trung tuyến ứng với cạnh huyền BD => NM = 1/2 . BD = BM

Xét △ABM vuông tại A và △CNM vuông tại C

Có: AM = MC (gt)

      BM = MN (cmt)

=> △ABM = △CNM (ch-cgv)

23 tháng 11 2014

CÁI ĐỀ TRẬT LẤT 

VẼ HÌNH KO RA :v

16 tháng 12 2016

mk k vẽ hình nữa nha bn!!!

Bài 1:

a/ Xét ΔABC và ΔACE có:

\(\widehat{BAC}=\widehat{ECA}\) (so le trong do AE // BC)

AC: Cạnh chung

\(\widehat{BCA}=\widehat{EAC}\) (so le trong do AE // BC)

=> ΔABC = ΔACE(g.c.g)

=> AB = AC(2 góc tương ứng)

=> ΔABC cân tại A (đpcm)

b/ Vì ΔABC cân tại A(ý a)

=> \(\widehat{ABC}=\widehat{ACB}\) = 50o

=> \(\widehat{BAC}=180^o-\widehat{B}-\widehat{C}=180^o-50^o-50^o=80^o\) (1)

Có: \(\widehat{ACB}=\widehat{EAC}\) = 50o (so le trong do AE // BC) (2)

Từ(1) và(2)

=>\(\widehat{BAE}=\widehat{BAC}+\widehat{EAC}\) (2 góc kề nhau)

= 80o + 50o = 130o

 

 

27 tháng 12 2017

Bài 1:

a/ Xét ΔABC và ΔACE có:

BACˆ=ECAˆBAC^=ECA^ (so le trong do AE // BC)

AC: Cạnh chung

BCAˆ=EACˆBCA^=EAC^ (so le trong do AE // BC)

=> ΔABC = ΔACE(g.c.g)

=> AB = AC(2 góc tương ứng)

=> ΔABC cân tại A (đpcm)

b/ Vì ΔABC cân tại A(ý a)

=> ABCˆ=ACBˆABC^=ACB^ = 50o

=> BACˆ=180oBˆCˆ=180o50o50o=80oBAC^=180o−B^−C^=180o−50o−50o=80o (1)

Có: ACBˆ=EACˆACB^=EAC^ = 50o (so le trong do AE // BC) (2)

Từ(1) và(2)

=>BAEˆ=BACˆ+EACˆBAE^=BAC^+EAC^ (2 góc kề nhau)

= 80o + 50o = 130o

26 tháng 12 2023

a: Xét ΔMAB và ΔMEC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMEC

=>AB=EC

Ta có: ΔMAB=ΔMEC

=>\(\widehat{MAB}=\widehat{MEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CE

b: Ta có: AB//CE

AB\(\perp\)AC

Do đó: CE\(\perp\)CA

=>ΔCAE vuông tại C

c: Xét ΔABC vuông tại A và ΔCEA vuông tại C có

CA chung

AB=CE

Do đó: ΔABC=ΔCEA

d: ta có: ΔABC=ΔCEA

=>BC=EA

mà \(AM=\dfrac{1}{2}EA\)

nên \(AM=\dfrac{1}{2}BC\)

e: Xét ΔMAC và ΔMEB có

MA=ME

\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMEB

=>\(\widehat{MAC}=\widehat{MEB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BE

f: Xét ΔMHC và ΔMKB có

MB=MC

\(\widehat{MBK}=\widehat{MCH}\)

BK=CH

Do đó: ΔMHC=ΔMKB

=>\(\widehat{HMC}=\widehat{KMB}\)

mà \(\widehat{KMB}+\widehat{KMC}=180^0\)(hai góc kề bù)

nên \(\widehat{HMC}+\widehat{KMC}=180^0\)

=>K,M,H thẳng hàng

25 tháng 12 2023

a) Ta có M là trung điểm của BC, vậy BM = MC. Vì MA = ME, nên ta có MA = ME = MC. Do đó, tam giác MEC là tam giác đều. 

Vì BM = MC và tam giác MEC là tam giác đều, nên ta có AB = EC và AB // EC.

 

b) Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90 độ. 

Vì AB // EC, nên góc BAC = góc ECA. 

Vậy tam giác ACE cũng là tam giác vuông tại C.

 

c) Tam giác ABC và tam giác CEA có cạnh chung AC và góc AEC = góc BAC = 90 độ (vì tam giác ABC là tam giác vuông tại A). 

Vậy theo trường hợp góc - cạnh - góc, ta có tam giác ABC và tam giác CEA là hai tam giác đồng dạng.

 

d) Ta đã biết M là trung điểm của BC, vậy BM = MC. 

Vì MA = ME, nên MA = MC/2. 

Do đó, AM = 1/2 BC.

 

e) Ta đã biết AB = EC và AB // EC. 

Vì MA = ME, nên MA = MC. 

Vậy theo trường hợp cạnh - góc - cạnh, ta có tam giác MAC và tam giác MEC là hai tam giác đồng dạng. 

Vậy AC = BE và AC // BC.

 

f) Trên BE lấy K, trên AC lấy H sao cho BK = CH. 

Vì M là trung điểm của BC, nên MK = MC/2. 

Vì tam giác MEC là tam giác đều, nên góc MCE = 60 độ. 

Vậy góc MCK = 60 độ. 

Vì BK = CH, nên góc BKC = góc CHB. 

Vậy góc BKC = góc CHB = 60 độ. 

Vậy tam giác BKC và tam giác CHB là hai tam giác đều. 

Vậy 3 điểm K, M, H thẳng hàng.