Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, C/m CP // AB
Xét ΔANM và ΔCNP. Ta có:
NM = NP (gt)
∠N1 = ∠N2 (đối đỉnh)
NA = NC (gt)
⇒ ΔANM = ΔCNP (c.g.c)
Nên: ∠A = ∠C1 (hai góc tương ứng)
Mà ∠A và ∠C1 ở vị trí so le trong
⇒ CP // AB
b, C/m MB = CP
Ta có: MA = CP (vì ΔANM = ΔCNP)
Mà MA = MB (gt)
⇒ MB = CP
c, C/m BC = 2MN
Nối BP. Xét ΔMBP và ΔCPB. Ta có:
BM = CP (gt)
∠B1 = ∠P1 (so le trong)
BP cạnh chung
⇒ ΔMBP = ΔCPB (c.g.c)
Nên: MP = BC (hai cạnh tương ứng)
Mà: MP = 2MN (vì N là trung điểm của MP)
⇒ BC = 2MN
a)
Xét tam giác AMN và tam giác CPN có:
AN=NC (N là trung điểm của AC)
\(\widehat{MNA}=\widehat{DNC}\)(2 góc đối đỉnh)
MN=NP
=> tam giác AMN= tam giác CPN(c-g-c)
b)Vì tam giác AMN= tam giác CPN
=>MA=PC ; \(\widehat{MAN}=\widehat{DCN}\)
Mà MA=MB(m là trung điểm của AB) ; Mà 2 góc này ở vị trí so le trong
=>CP=BM ;=>CP//BM
Vậy CP=BM và CP//BM
c)Xét tam giác MBC và tam giác PCM có:
MB=CP
\(\widehat{BMC}=\widehat{DCM}\)(MB//CP)
MC chung
=>tam giác MBC= tam giác CPM(c-g-c)
=>\(\widehat{PMC}=\widehat{BCM}\) ; MD=BC
Mà 2 goác này ở vị trí so le trong ; =>2MN=BC
=>MN//BC ; =>MN=\(\frac{1}{2}BC\)
a/ CM: tam giác NAM=tam giác NCP (c.g.c)
=>Góc MAN = Góc NCP
Mà 2 góc nằm ở vị trí so le trong
=>đpcm
b/Vì tam giác NAM= tam giác NCP(cmt)
=>AM=CP (1)
Mà AM=BM(gt) (2)
Từ (1) và (2) suy raBM=CP
c/ Nối B với P
CM Tam giác BMP= tam giác PCB(c.g.c)
=>BC=MP(cạnh tương ứng) (3)
Mà 2MN=MP (4)
Từ (3) và (4) suy ra đpcm
a) Xét tam giác ANM và tam giác CNP có:
AN=CN( vì N là trung điểm của AC)
góc ANM= góc CNP ( đối đỉnh)
NM=NP
=> tam giác ANM=tam giác CNP ( c.g.c)
=> góc A= góc NCP
mà chúng là 2 góc so le trong => CP//AB
b) theo a) tam giác ANM=tam giác CNP
=> AM=CP
Mà AM= MB ( vì M là trung điểm của AB)
=> CP=MB
c) Vì M là trung điểm của AB, N là trung điểm của AC => MN là đường trung bình của tam giác ABC
=> BC=2MN
a) - Xét tam giác CPN và tam giác AMN có:
MN=NP (gt)
Góc ANM=CNP (2 góc đối đỉnh)
AN=NC (gt)
Do đó: tam giác ANM= tam giác CNP (c.g.c)
- Vì tam giác ANM= tam giác CNP nên góc ANM = góc CNP ( 2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong nên AB//CP
b) Vì tam giác ANM= tam giác CNP( cmt) nên AM =CP (2 cạnh tương ứng)
Mà AM=MB (vì điểm M là trung điểm của AB) nên CP= MB
c) - Ta có: CP= AB ( câu a)
=> Góc BMC= góc MCP (2 góc so le trong)
- Xét tam giác MBC và tam giác CPM có:
MB=PC ( câu b)
MC là cạnh chung
Góc BMC =góc MCD (cmt)
Do đó: tam giác MBC= tam giác CPM (c.g.c)
=> PM= BC ( 2 cạnh tương ứng)
Mà MN= NP hay MP= 2MN
Vậy BC=2MN