K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

3) Chứng minh EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF

Tứ giác BFEC có  B E C ^ = B F C ^ = 90 0

=> tứ giác BFEC nội tiếp đường tròn đường kính BC

Gọi O là tâm đường tròn ngoại tiếp tứ giác BFEC thì O cũng là tâm đường tròn ngoại tiếp tam giác BEF

∆ OBE cân tại O (do OB=OE) => O B E ^ = O E B ^

AEH vuông tại E có EM là trung tuyến ứng với cạnh huyền AH (Vì M là trung điểm AH)

=> ME=AH:2= MH do đó  ∆ MHE cân tại M=> M E H ^ = M H E ^ = B H D ^

Mà B H D ^ + O B E ^ = 90 0 ( ∆ HBD vuông tại D)

Nên  O E B ^ + M E H ^ = 90 0 Suy ra  M E O ^ = 90 0

⇒ E M ⊥ O E tại E thuộc ( O ) => EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF

4) Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh DIJ ^   =   DFC ^  

Tứ giác AFDC có A F C ^ = A D C ^ = 90 0  nên tứ giác AFDC nội tiếp đường tròn =>  B D F ^ = B A C ^

∆ BDF và  ∆ BAC có  B D F ^ = B A C ^  (cmt); B ^ chung do đó  ∆ BDF  ~   ∆ BAC(g-g)

Chứng minh tương tự ta có  ∆ DEC ~   ∆ ABC(g-g)

Do đó  ∆ DBF ~ ∆ DEC  ⇒ B D F ^ = E D C ^ ⇒ B D I ^ = I D F ^ = E D J ^ = J D C ^ ⇒ I D J ^ = F D C ^ (1)

Vì  ∆ DBF ~ ∆ DEC (cmt); DI là phân giác, DJ là phân giác  ⇒ D I D F = D J D C  (2)

Từ (1) và (2) suy ra  ∆ DIJ ~ ∆ DFC (c-g-c) =>  DIJ ^   =   DFC ^  

26 tháng 10 2018

1) Chứng minh tứ giác AEHF nội tiếp đường tròn

BE là đường cao ABC  ⇒ B E ⊥ A C ⇒ A E H ^ = 90 0

CF là đường cao  ∆ ABC  ⇒ C F ⊥ A B ⇒ A F H ^ = 90 0

Tứ giác AEHF có A E H ^ + A F H ^ = 180 0  nên tứ giác AEHF nội tiếp đường tròn

2) Chứng minh CE.CA = CD.CB

∆ ADC và  ∆ BEC có

A D C ^ = B E C ^ = 90 0  (AD,BE là các đường cao)

C ^  chung

Do đó  ∆ ADC ~ ∆ BEC(g-g)

⇒ D C E C = A C B C ⇒ D C . B C = C E . A C

19 tháng 5 2020

giúp mình vs

a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)

nên AEHF là tứ giác nội tiếp

b: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>\(\widehat{FEC}+\widehat{ABC}=180^0\)

a: Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: AH vuông góc với BC tại D

b:

Xét tứ giác CDFA có góc CDA=góc CFA=90 độ

nên CDFA là tứ giác nội tiếp

=>góc BFD=góc BCA

Xét tứ giác BFEC có góc BFC=góc BEC=90 độ

nên BFEC là tứ giác nội tiếp

=>góc AFE=góc ACB

Ta có: góc COE=180 độ-2 góc C

góc EFD=180 độ-góc AFE-góc BFD

=180 độ-2 góc C

=>góc COE=góc EFD

=>DOEF là tứ giác nội tiếp