K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

a) Trong tg ABC có góc C<A=> AB<BC( quan hệ giữa góc và cạnh đối diện trong 1 tg)

21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

a: Xét ΔABC có AB<AC<BC

nên góc C<góc B<góc A

b: góc C=180-50-60=70 độ

Xét ΔABC có góc A<góc B<góc C

nên BC<AC<AB

a: góc C<góc B

=>AB<AC

b: Xét ΔABM co AB=AM và góc A=60 độ

nên ΔAMB đều

28 tháng 4 2018

chữ số 5 trong số 245 836

28 tháng 4 2018

Ta có \(\widehat{A}>\widehat{C}\)(gt) (1)

và \(\widehat{A}+\widehat{C}=180^o-\widehat{B}\)

=> \(\widehat{A}+\widehat{C}=180^o-60^o=120^o\)

=> \(\widehat{A}=120^o-\widehat{C}\)(2)

Thế (2) vào (1), ta có:

\(120^o-\widehat{C}>\widehat{C}\)

=> \(120^o-\widehat{C}-\widehat{C}>0\)

=> \(120^o-2\widehat{C}>0\)

=> \(2\widehat{C}>120^o\)

=> \(\widehat{C}>60^o\)

=> \(\widehat{C}>\widehat{B}=60^o\)

=> AC < AB (quan hệ giữa góc và cạnh đối diện trong tam giác)

Ta lại có \(\widehat{C}>60^o\)

=> \(180^o-\widehat{A}-\widehat{B}>60^o\)

=> \(180^o-\widehat{A}-60^o>60^o\)

=> \(120^o-\widehat{A}>60^o\)

=> \(\widehat{A}>60^o=\widehat{B}\)

=> AC < BC (quan hệ giữa góc và cạnh đối diện trong tam giác)

=> AC < AB < BC

23 tháng 5 2021

Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.

a, Tính độ dài cạnh BC của tam giác ABC.

b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.

c, Chứng minh CB = CD.

* Hình tự vẽ 

a)

Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm

b)

Xét tam giác DBC, ta có:

BK là trung tuyến ứng với cạnh CD ( gt )

CA là trung tuyến ứng với cạnh BD ( AB = AD )

BK giao với CA tại E

=> E là trọng tâm của tam giác BDC

=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm

c)

Xét tam giác BDC, ta có:

CA là trung tuyến ứng với cạnh BD

CA là đường cao ứng với cạnh BD

=> Tam giác BDC cân tại C

=> CB = CD

23 tháng 5 2021

Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC

B A C

Theo đề ra: Góc A = 50 độ

                   Góc B = 60 độ

                   Góc C = 70 độ

=> Góc A < góc B < góc C

=> BC < AC < AB ( quan hệ giữa góc và cạnh đối diện trong một tam giác )

5 tháng 5 2017

Vì BC < AC < AB ⇒ ∠A < ∠B < ∠C hay ∠C > ∠B > ∠A . Chọn D

19 tháng 3 2022

Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)=180^0-\left(70^0+50^0\right)=180^0-120^0=60^0\)

\(\widehat{A}>\widehat{C}>\widehat{B}\left(70^0>60^0>50^0\right)\)

\(=>BC>AB>AC\)

=> Chọn C

19 tháng 3 2022

C

21 tháng 4 2022

a, Áp dụng định lý Pytago :

ta có : \(BC^2=AC^2+AB^2\)

           \(BC^2=3^2+4^2\)

           \(BC^2=9+16=25=5^2\)

       =>\(BC=5^{ }\)

b, Áp dụng định lý trong một tam giác gốc đối diện với cạnh lớn hơn là góc lớn hơn

Có : Trong tam giác ABC có BC=5, AC=4, AB=3

=> góc A > góc B > góc C 

Vậy góc B > góc C

c, Xét △BIC và △AIC có

góc \(C_1=C_2\)

BAC = KHC = 90 độ

IC cạnh chung

=> △HIC = △AIC

Xét △HIB và △KIA có

IH = IA (cmt)

\(I_1=I_2\)( đối đỉnh)

Góc A = góc H = 90 độ

=> △HIB = △AIK

Vậy cạnh AK = BH