K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

https://olm.vn/hoi-dap/detail/84908086242.html tham khảo

18 tháng 4 2016

C/m : AD+BD=BC

Xét tg ABD và tg BCD  ( cgc)

Mà : trong tg ABD Có :

AD+BD=AB ( vì tam giác này là tg cân , nên cạnh đáy dài ) 

=> AD+BD=BC(=AB)

Vậy : đpcm

Tham khảo


6 tháng 2 2017 lúc 14:19

Cho tam giác ABC cân tại A , góc A=20 độ , vẽ tam giác đều DBC , D nằm trong tam giác ABC . Tia phân giác của góc ABD cắt AC tại H . Chứng minh :

a) Tia AD là tia phân giác của góc BAC

b) AM = BC

Hình thì chắc bạn vẽ được nên tớ không vẽ nữa!!!leuleuleuleuleuleu

a, Đi chứng minh tam giác ABD=tam giác ACD (c.c.c) =>góc BAD=góc CAD=>AD là tia phân giác của góc BAC(đpcm)

nếu có j thắc mắc hỏi mình nha!!!leuleuleuleu

b, tớ sửa đề chứng minh AH=BC do không có điểm M.

Chứng minh

Xét tam giác ABC cân tại A ta có:

góc ABC=góc ACB=(180độ -20 độ):2=160 độ:2=80độ (theo tính chất của tam giác cân)

ta lại có: góc DBC=60 độ( theo tính chất của tam giác đều)

mà góc ABD=góc ABC-góc DBC=80độ -60 độ=20độ

mặt khác góc BAD=gócCAD=20độ/2=10độ và góc ABD=20độ/2=10độ (theo tính chất của tia phân giác)

Xét tam giác ABH và tam giác BAD ta có:

góc BAH=góc ABD (=20độ); AB: cạnh chung; góc ABH=góc BAD(=10độ)

Do đó tam giác ABH = tam giác BAD

=> AH=BD mà BD=BC( theo tính chất của tam giác đều) nên AH=BC (đpcm)

Có chỗ nào vướng mắc hỏi mình nha!! Chúc bạn học giỏi!!leuleuleuleu

7 tháng 2 2018

Ủa có M mà

8 tháng 2 2022

oh my lord câu của bn từ 2016 r kìa