K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2016

Áp dụng định lý Pi ta go, ta có:

AH2 + HC2 = AC2

<=> AH2 = AC2 - HC2

<=> AH2 = 152 - 92

<=> AH2 = 144

Áp dụng định lý Pi ta go, ta có:

AB2 = AH2 + BH2

<=> AB2 = 144 + 52

<=> AB2 = 144 + 25

<=> AB2 = 169

=> \(AB=\sqrt{169}=13\)

=> AB = 13 cm

nha

31 tháng 1 2016

Bạn tự vẽ hình nhé.

Xét tam giác AHC vuông tại H có: AC2 = AH2 + HC2 (Định lí Pitago)

=> 152 = AH2 + 92

=> AH2 = 144

Xét tam giác AHB vuông tại H có AB2 = AH2 + HB2 (Định lí Pitago)

=> AB2 = 144 + 52

=> AB2 = 169

=> AB = 13 (cm)

14 tháng 6 2017

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

17 tháng 9 2019

Câu này dễ

AH 12cm

AC13cm

AB13cm

1 tháng 2 2016

minh moi hoc lop 6 thoi

17 tháng 1 2020

A B C H

TA CÓ BH + HC = BC

=> BC = 9+16=25

THEO ĐỊNH LÝ PITAGO XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ

\(BC^2=AB^2+AC^2\)

\(AB^2=BC^2-AC^2\)

\(AB^2=25^2-5^2\)

......

AH TƯƠNG TỰ

20 tháng 5 2020

Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H, ta có:

AH²+BH²=AB²

AH²=AB²−BH²

AH²=52−32

⇒AH²=16

⇒AH=4(cm)

Ta có:

BH+HC=BC

⇒HC=BC−BH

⇒HC=8−3

⇒HC=5(cm)

Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H, ta có:

AH²+HC²=AC²

42+52=AC²

⇒AC²=41

⇒AC=√41(cm)

Vậy HC = 5 cm, AC = √41 cm

#Tuyên#

8 tháng 5 2017

A B C H 20 cm 12 cm 5 cm

Áp dụng định lý Pi ta go vào tam giác AHB ,có:

\(AB=\sqrt{AH^2+HB^2}=\sqrt{12^2+5^2}=13\left(cm\right)\)

Áp dụng định lý Pi ta go vào tam giác AHC ,có:

\(HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16\left(cm\right)\)

Chu vi tam giác ABC là:

\(13+20+5+16=54\left(cm\right)\)

5 tháng 2 2022

=54 nha

HT

k cho mình nha

@@@@@@@@@@@@@@@@@@

25 tháng 2 2017

Nhiều thế.

Bài 1: 

B C A

Xét \(\Delta ABC\)có \(AB=AC\)

\(\Rightarrow\Delta ABC\)cân tại \(A\)

\(\Rightarrow\widehat{B}=\widehat{C}=70\)độ

\(\Rightarrow\widehat{A}=180-70-70\)

\(\Rightarrow\widehat{A}=40\)độ

(Mình làm hơi nhanh khúc tính nhé tại đang bận!)

25 tháng 2 2017

Tiếp nè: Bài 2

  A B C H

Bạn xét 2 lần pytago là ra nhé. Lần 1 với \(\Delta AHC\). Lần 2 với \(\Delta AHB\). Thế là xong 2 câu a,b

Bài 3: 

B A C H

a) Ta có \(\Delta ABC\)cân tại \(A\)

\(\Rightarrow AH\)vừa là đường cao vừa là trung tuyến

\(\Rightarrow HB=HC\)

b) Câu này không có yêu cầu.

c + d: Biết là \(\widehat{HDE}=90\)và \(\Delta HDE\)nhưng không nghĩ ra cách làm :(

31 tháng 1 2019

a) Xét \(\Delta ABH\)và \(\Delta AHC\)có:
AB = AC (gt)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(\Rightarrow\Delta ABH=\Delta AHC\left(Ch-gn\right)\)
\(\Rightarrow HB=HC\)(2 cạnh tương ứng)
\(\Rightarrow\widehat{BAH}=\widehat{HAC}\)
b) Ta có : HB=HC (cma ) 
Mà HB + HC = BC 
=> HB = HC = 4 cm
Xét \(\Delta ABH\)vuông tại H có : AB2=HA2+BH2 (Pytago)
=> AH2 = AB2 - HB2 
=> AH2 = 52 - 42 = 9 
=> AH = 3 (cm)
c) Xét \(\Delta HBD\)và \(\Delta HEC\)có:
HB = HC (cma)
\(\widehat{HDB}=\widehat{HEC}\left(=90^o\right)\)
=> \(\Delta HBD=\Delta HEC\left(Ch-gn\right)\)
=> HD = HC ( 2 cạnh tương ứng)
=> \(\Delta HDE\)cân tại H 

1 tháng 2 2019

Góc BAH =góc HAC là 2 góc tương ứng 

HẢ BN