K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2015

Vì AI là phân giác của BAC =>BAI=CAI
Lại có ABC=ACB
=>BAI+ABC=CAI+ACB
Mà BAI+ABC+AIB=180 độ
      CAI+ACB+AIC=180 độ
=>AIB=AIC
Xét tam giác AIB và tam giác AIC có
AIB=AIC(cmt)
AI chung
BAI=CAI(cmt)
Do đó tam giác AIB= tam giác AIC
=>AB=AC (2 cạnh tương ứng)
bn tick cho mk nha

24 tháng 12 2015

xét tam giácAIB và tam giác AIC ta có

góc b= góc c(gt)

AI=AI(canh chung)

goc BAI= goc IAC(tia BI la tia pg cua goc a)

suy ra tam giác AIB = tam giác AIC(gcg)

suy ra AB =AC (2 cạnh tương ứng)

13 tháng 12 2021

a) xét TG ABI và TG ẠCI

ta có AB=AC(gt)

góc BAI=góc IAC (gt)

Ai chung 

vậy TG ABI=TG ACI(c-g-c)

13 tháng 12 2021

a) Xét tam giác AIB và tam giác AIC có:

+ AI chung.

+ AB = AC (gt).

+ ^BAI = ^CAI (AI là phân giác ^BAC).

=> Tam giác AIB = Tam giác AIC (c - g - c).

b) Xét tam giác ABc có: AB = AC (gt).

=> Tam giác ABC cân tại A.

Mà AI là phân giác ^BAC (gt).

=> AI là đường cao (Tính chất các đường trong tam giác cân).

=> AI vuông góc BC (đpcm).

c) Xét tam giác ABC cân tại A có:

^BAC = 60 độ (gt).

=> Tam giác ABc đều.

=> Góc ABC = 60 độ (Tính chất tam giác đều).

 

 

5 tháng 1

đề VTMO hả bạn mình chỉ giải đc câu 2 thôi


a: Xét ΔABI và ΔACI có

AB=AC

\(\widehat{BAI}=\widehat{CAI}\)

AI chung

Do đó: ΔABI=ΔACI

7 tháng 11 2021

câu b dâu

1 tháng 12 2023

Để giải bài toán này, ta có thể sử dụng các định lý và tính chất trong hình học Euclid. Dưới đây là cách chứng minh cho từng phần:

a) Chứng minh tam giác AIB = tam giác AIC:

Ta có AB = AC (do đề bài cho)IA = IA (do cùng là một đoạn)IB = IC (do I là trung điểm của BC)Vậy tam giác AIB và tam giác AIC bằng nhau theo nguyên lý cạnh - cạnh - cạnh.

b) Chứng minh AI là tia phân giác của góc BAC:

Do tam giác AIB = tam giác AIC nên ∠BAI = ∠CAIVậy AI là tia phân giác của góc BAC.

c) Chứng minh IA là tia phân giác của góc HIK:

Do IH vuông góc AB và IK vuông góc AC nên ∠HIK = 90° + ∠BACMà AI là tia phân giác của góc BAC nên ∠HIA = ∠KIA = 1/2 ∠BACVậy ∠HIA + ∠KIA = ∠HIKVậy IA là tia phân giác của góc HIK.

a: Xét ΔAIB và ΔAIC có

AB=AC

IB=IC

AI chung

Do đó: ΔAIB=ΔAIC

b: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của \(\widehat{BAC}\)

c: Xét ΔAIH vuông tại H và ΔAIK vuông tại K có

AI chung

\(\widehat{HAI}=\widehat{KAI}\)

Do đó: ΔAIH=ΔAIK

=>\(\widehat{HIA}=\widehat{KIA}\)

=>IA là phân giác của \(\widehat{HIK}\)

1 a, so sánh ABC và ACB . tính góc ABHa, so sánh ABC và ACB . tính góc ABHb, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD  tại  I . chứng minh tam giác AIB =tam giác BHAc, tia BI cắt AC ở E . chứng minh  tam giác ABE đều d, chứng minh  DC >DB2 TAM GIÁC ABC  VUÔNG TẠI A ĐƯỜNG PHÂN GIÁC BD . KẺ AE VUÔNG BD , AE CẮT BC Ở Ka, BIẾT AC = 8cm...
Đọc tiếp

1 a, so sánh ABC và ACB . tính góc ABHa, so sánh ABC và ACB . tính góc ABH
b, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD  tại  I . chứng minh tam giác AIB =tam giác BHA

c, tia BI cắt AC ở E . chứng minh  tam giác ABE đều 

d, chứng minh  DC >DB

2

 TAM GIÁC ABC  VUÔNG TẠI A ĐƯỜNG PHÂN GIÁC BD . KẺ AE VUÔNG BD , AE CẮT BC Ở K

a, BIẾT AC = 8cm AB=6cm . TÍNH BC 

b, TAM GIÁC ABK LÀ TAM GIÁC GÌ

c, CHỨNG MINH DK VUÔNG BC .

d, KẺ AE VUÔNG BC. CHỨNG MINH AK LÀ TIA PHÂN GIÁC  CỦA GÓC HAC

3

 CHO TAM ABC CÓ AB=3cm AC=4cm BC=5cm

a, TAM GIÁC ABC LÀ TAM GIÁC GÌ

b, VẼ BD LÀ PHÂN GIÁC CỦA GÓC B. TRÊN CẠNH BC LẤY DIỂM ED TẠI F. CHỨNG MINH AE SONG SONG FC

c, CHỨNG MINH TAM GIÁC ABH = TAM GIÁC ACH


b, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD  tại  I . chứng minh tam giác AIB =tam giác BHA

c, tia BI cắt AC ở E . chứng minh  tam giác ABE đều 

d, chứng minh  DC >DB

 

GIÚP MIK LÀM 3 BÀI NÀY NHA MÌNH CẢM ƠN

0