Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong tam giac vuong ABH Cco \(AH^2+BH^2=AB^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\)
AHC co \(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\left(2\right)\)
tu (1) va(2 ) suy ra \(AB^2-BH^2=AC^2-HC^2\Rightarrow AB^2+HC^2=AC^2+BH^2\)
Kẻ Ax là tiếp tuyến tại A với (O).
Có: xABˆ=ACBˆ(=12sđAB⌢)
Xét ΔvABDΔvABD, có:
BACˆBAC^: chung;
⇒ΔvABD∼ΔvACE(gn)⇒ΔvABD∼ΔvACE(gn)
⇒ABAD=AEAC⇒ABAD=AEAC
mà BACˆBAC^ chung
⇒ΔADE∼ΔABC(cgc)⇒ΔADE∼ΔABC(cgc)
⇒AEDˆ=ACBˆ=xABˆ⇒AED^=ACB^=xAB^(ở vị trí SLT)
⇒Ax//DE
mà Ax⊥OA NÊN DE⊥OA
Ta có: AM là đường cao thứ 3( đi qua trực tâm H)
Xét ΔBMHΔBMH và ΔBDCΔBDC có:
BMHˆ=BDCˆ(=900)BMH^=BDC^(=900)
BˆB^ chung
⇒ΔBMH≈ΔBDC(g−g)⇒ΔBMH≈ΔBDC(g−g)
⇒BMBD=BHBC⇒BMBD=BHBC⇔BD.BH=BM.BC(1)⇔BD.BH=BM.BC(1)
Xét ΔCMHΔCMH và ΔCEBΔCEB có:
CMHˆ=CEBˆ(=900)CMH^=CEB^(=900)
CˆC^ chung
⇒ΔCMH=ΔCEB(g−g)⇒ΔCMH=ΔCEB(g−g)
⇒CMCH=CECB⇔CH.CE=BC.CM(2)⇒CMCH=CECB⇔CH.CE=BC.CM(2)
Cộng (1) và (2) vế theo vế, ta được:
BD.BH+CH.CE=BM.BC+BC.CMBD.BH+CH.CE=BM.BC+BC.CM
⇒BD.BH+CH.CE=BC.(BM+CM)=BC2(đpcm)⇒BD.BH+CH.CE=BC.(BM+CM)
=BC2(đpcm)
Giải phần góc nhé:
Gọi I là giao điểm của CE và BD.
Dễ thấy \(\Delta BEI\sim\Delta CDI\)
\(\Rightarrow\frac{EI}{DI}=\frac{BI}{CI}\)
\(\Rightarrow\frac{EI}{BI}=\frac{DI}{CI}=sin30^o=\frac{1}{2}\)
Bên cạnh đó có: \(\widehat{EID}=\widehat{BIC}\)
\(\Rightarrow\Delta EID\sim\Delta BIC\)
\(\Rightarrow\frac{ED}{BC}=\frac{EI}{BI}=\frac{DI}{CI}=\frac{1}{2}\)
\(\Rightarrow ED=MB=MC\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\)tam giác BDM đều
Tam giác CEB vuông tại E có M là trung điểm cạnh huyền.
\(\Rightarrow ME=MB=MC\left(1\right)\)
Tam giác CDB vuông tại E có M là trung điểm cạnh huyền.
\(\Rightarrow MD=MB=MC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow MD=ME\left(3\right)\)
Tam giác AEC vuông tại E
\(\Rightarrow\widehat{ACE}=90^o-\widehat{CAE}=90^o-60^o=30^o\)
Dễ thấy tứ giác EDCB nội tiếp đường tròn tâm M.
\(\Rightarrow\widehat{EMD}=2\widehat{ECD}=2.30^o=60^o\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\Delta BDM\) đều.