Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có
\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)
\(\Leftrightarrow\widehat{B}=37^0\)
b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)
mà BD+CD=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)
Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2\)=\(AB^2+AC^2\)
⇔\(BC^2\)= 52 + 122 =169
hay BC = 13cm
Ta có: ΔABC vuông tại A
nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC
hay R = \(\dfrac{BC}{2}\)= \(\dfrac{13}{2}\) =6.5(cm)
a) Ta có : \(BC=\sqrt{AB^2+AC^2}=\sqrt{10^2+15^2}=5\sqrt{13}\) (cm)
\(sinB=\frac{AC}{BC}=\frac{15}{5\sqrt{13}}=\frac{3}{\sqrt{13}}\Rightarrow\widehat{B}\approx56^o18'35,76''\)
b) Đặt AI = x (0<x<15)
Theo t/c đường phân giác ,ta có \(\frac{AI}{AB}=\frac{IC}{BC}\) hay \(\frac{x}{10}=\frac{15-x}{5\sqrt{13}}\Leftrightarrow x=\frac{10\sqrt{13}-20}{3}\) (cm)
c) Tính được : \(BI=\sqrt{AB^2+AI^2}=\sqrt{10^2+\left(\frac{10\sqrt{13}-20}{3}\right)^2}\) (cm)
Lại có : AB . AI = BI . AH => \(AH=\frac{AB.AI}{BI}=............\)
a) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
\(\Leftrightarrow\widehat{B}=53^0\)