K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2020

ai giúp tớ với 

29 tháng 10 2020

a) Từ A kẻ AE//BD cắt đường thẳng CB tại E
=> ^BAE=^DBA=^B/2=60* và ^ABE=60* (kề bù với ^B)
=> ∆ABE đều nên AB=BE=AE=6
Do BD//AE suy ra: BD/AE=CB/CE
mà CE=CB+BE=12+6=18cm
ta có BD/6=12/18 suy ra BD=12.6/18=4 (cm)

b) Xét ∆ABM có AB=BM =6cm (do BM=MC=BC/2)
nên ∆ABM cân tại B mà BD là đường phân giác nên cũng là đường cao
do đó BD vuông góc với AM.

10 tháng 8 2016
Đùng hệ thức lượng trong tam giác tính ra BC dùng tính chất đường phân giác tính ra BA dùng tiếp hệ thức lượng tính ra BD Câu b/ đễ thấy tam giác ABM là tam giác cân tại B có BD là phân giác nên BD cũng là đường cao vậy BD vuông góc với AM
7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:

a. Áp dụng định lý Pitago: 

$BC=\sqrt{AB^2+AC^2}=\sqrt{4^2+6^2}=2\sqrt{13}$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{4.6}{2\sqrt{13}}=\frac{12\sqrt{13}}{13}$ (cm)

b. Vì tam giác $ABC$ vuông tại $A$ nên $AM=\frac{BC}{2}=\sqrt{13}$ (cm)

 

1 tháng 8 2021

A=120 độ chứ không phải 90 độ ạ

6 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Từ (1) và (2) suy ra: BM = AB ⇒ ∆ ABM cân tại B

Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao (tính chất tam giác cân). Vậy BD ⊥ AM

17 tháng 9 2018

a) Ta có: 

ˆABD=ˆCBD=\(\frac{\widehat{ABC}}{2}\)=120: 2=60

Từ A kẻ đường thẳng song song với BD cắt CD tại E.

Lại có:

ˆBAE=ˆABD=60(so le trong)

ˆCBD=ˆAEB=60 (đồng vị)

Suy ra tam giác ABE  đều 

⇒AB=BE=EA=6(cm)(1)

Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)

Tam giác ACE có AE // BD nên suy ra:

\(\frac{BC}{CE}\)=\(\frac{DC}{AE}\)⇒BD=\(\frac{BC.AE}{CE}\)=\(\frac{12.6}{18}\)=4(cm)

b) Ta có: 

MB=MC=\(\frac{1}{2}\).BC=\(\frac{1}{2}\).12=6(cm)(2)

Từ (1) và (2) suy ra:

BM=AB⇒BM=AB⇒ ∆ABM cân tại B.

Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao (tính chất tam giác cân). Vậy BD⊥AM

tk mik nha

31 tháng 7 2020

C M B E D A

a) Ta có: 

\(\widehat{ABD}=\widehat{CBD}=\frac{\widehat{ABC}}{2}=\frac{120^o}{2}=60^o\)

Từ A kẻ đường thẳng song song với BD cắt CB tại E 

Lại có:

\(\widehat{BAE}=\widehat{ABD}=60^o\) ( so le trong ) 

\(\widehat{CBD}=\widehat{AEB}=60^o\) ( đồng vị )

Suy ra tam giác ABE  đều 

=> AB = BE = EA = 6 ( cm ) (1)

Khi đó: CE = BC + BE = 12 + 6 = 18 ( cm )

Tam giác ACE có AE // BD nên suy ra :

\(\frac{BC}{CE}=\frac{BD}{AE}\)

\(\Rightarrow BD=\frac{BC.AE}{CE}=\frac{12.6}{18}=4\left(cm\right)\)

b) Ta có: 

\(MB=MC=\frac{1}{2}.BC=\frac{1}{2}.12=6\left(cm\right)\left(2\right)\)

Từ (1) và (2) suy ra:

BM = AB => Tam giác ABM cân tại B.

Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao ( tính chất tam giác cân )

 Vậy \(BD\perp AM\)