Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AH=1/2 AC
AH=1/2 . 40 => AH = 20
Tam giác ABH vuông tại H ( GT)
Áp dụng định lý pytago ta có : AH2 + BH2 = AB2
Thay số ta đc ;202 + BH2 = 292
=> BH2 = 202 - 292 ( tự tính nha )
Tam giác ACH vuông tại H ( GT)
Áp dụng định lý pytago ta có : AH2 + CH2 = AC2 (thay số rr tự tính )
B chu vi khi tính đc BH và CH r thì tính đc BC .sau đó tính chu vi tam giác là các cạnh cộng lại vs nhau là đc
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15cm
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
hay AC=20cm
Vậy: AB=15cm; AC=20cm
Ta có: BH+CH=BC(H nằm giữa B và C)
hay BC=9+16=25cm
Ta có: \(AB^2+AC^2=15^2+20^2=625\)
\(BC^2=25^2=625\)
Do đó: \(BC^2=AB^2+AC^2\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
A B C H 20 12 5
a, Áp dụng định lí Pytago trong tam giác \(AHB\)có \(\widehat{H}=90^0\)ta có :
\(HA^2+HB^2=AB^2\)
\(AB^2=12^2+5^2=144+25=169\)
\(AB=\sqrt{169}=13cm\)
Áp dụng định lí Pytago trong tam giác \(AHC\)có \(\widehat{H}=90^0\)ta có :
\(HA^2+HC^2=AC^2\)
\(HC^2=AC^2-HA^2\)
\(HC^2=20^2-12^2\)
\(HC^2=400-144=256\)
\(HC=\sqrt{256}=16cm\)
\(H\in BC\)
\(\Rightarrow HB+HC=BC\)
hay \(BC=5+16=21cm\)
b, Chu vi tam giác ABC = \(20+21+13=54cm\)
a, Theo định lí Pytago tam giác AHB vuông tại H
\(AB=\sqrt{AH^2+HB^2}=13cm\)
Theo định lí Pytago tam giác ẠHC vuông tại H
\(HC=\sqrt{AC^2-AH^2}=16cm\)
-> BC = HB + HC = 5 + 16 = 21 cm
b, Chu vi tam giác ABC là \(P_{ABC}=AC+AB+BC=21+13+20=54cm\)