K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2022

AH=1/2 AC

AH=1/2 . 40 => AH = 20

Tam giác ABH vuông tại H ( GT)

Áp dụng định lý pytago ta có : AH2 + BH2 = AB2

Thay số ta đc ;20+ BH= 29

=> BH= 202 - 29 ( tự tính nha )

Tam giác ACH vuông tại H ( GT)

Áp dụng định lý pytago ta có : AH2 + CH2 = AC2 (thay số rr tự tính )

B chu vi khi tính đc BH và CH r thì tính đc BC .sau đó tính chu vi tam giác là các cạnh cộng lại vs nhau là đc 

 

12 tháng 1 2022

chuyên toán nó phải gọi là đẳng cấp :)))))))

20 tháng 12 2020

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được: 

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\)

hay AB=15cm

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+16^2=400\)

hay AC=20cm

Vậy: AB=15cm; AC=20cm

Ta có: BH+CH=BC(H nằm giữa B và C)

hay BC=9+16=25cm

Ta có: \(AB^2+AC^2=15^2+20^2=625\)

\(BC^2=25^2=625\)

Do đó: \(BC^2=AB^2+AC^2\)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

A B C H 20 12 5

a, Áp dụng định lí Pytago trong tam giác \(AHB\)có \(\widehat{H}=90^0\)ta có :

\(HA^2+HB^2=AB^2\)

\(AB^2=12^2+5^2=144+25=169\)

\(AB=\sqrt{169}=13cm\)

Áp dụng định lí Pytago trong tam giác \(AHC\)có \(\widehat{H}=90^0\)ta có :

\(HA^2+HC^2=AC^2\)

\(HC^2=AC^2-HA^2\)

\(HC^2=20^2-12^2\)

\(HC^2=400-144=256\)

\(HC=\sqrt{256}=16cm\)

\(H\in BC\)

\(\Rightarrow HB+HC=BC\)

hay \(BC=5+16=21cm\)

b, Chu vi tam giác ABC = \(20+21+13=54cm\)

19 tháng 3 2022

a, Theo định lí Pytago tam giác AHB vuông tại H

\(AB=\sqrt{AH^2+HB^2}=13cm\)

Theo định lí Pytago tam giác ẠHC vuông tại H

\(HC=\sqrt{AC^2-AH^2}=16cm\)

-> BC = HB + HC = 5 + 16 = 21 cm 

b, Chu vi tam giác ABC là \(P_{ABC}=AC+AB+BC=21+13+20=54cm\)

13 tháng 1 2022

TK

undefined

13 tháng 1 2022

cảm ơn bn nhìu nha