K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình tự vẽ nha

a)Vì tam giác có AB=AE và góc BAE bằng 90 đọ nên tam giác BAE vuông cân mà AM là tia phân giác của góc BAE nên AM cùng là đg cao và là đg trung tuyến của tam giác BAE(tự chúng minh)

Suy ra BM=AM=MC(tính chất đg trung tuyến của tam giác vuông) và góc BMA bằng 90 độ.Do đó tam giác ABM vuông cân(ĐPCM)

b)Xét 2 tam giác BHA và tam giác AIE lần lượt vuông tại H,I có:

BA=AE

góc BAH=góc AEI(vì cùng phụ với góc IAE)

Suy ra tam giác BHA =tam giác AIE(cạnh huyền-góc nhọn kề)

Suy ra IE=AH(đpcm)

c)từ E kẻ đg vuông góc với IE cắt BC tại D,nối M với D 

Ta có:IH vuông góc với IE mà ED vuông góc với IE nên IH song song với DE.Suy ra có 2 cặp song song với nhau và cắt nhau đó là HD với IE,IH với ED

Do đó áp dụng t/c đoạn chắn suy ra IE=HD mà IE=AH nên AH =HD

Ta lại có:IH song song vói ED mà IH vuông góc với BC nên ED vuông góc với BC

Suy ra tam giác BDE vuông góc tại D

Xét tam giác BDE có đg trung tuyến MD(vì M là trung điểm của BE(câu A)) nên BM=MD=ME(t/c đg trung tuyến của tam giác vuông)

Mà AM=BM=ME(câua)) nên MA=MD

Suy ra tam giác AHM=tam giác DHM(c.c.c)

Suy ra góc AHM=góc DHM,mà tổng 2 góc này bằng 90 độ nên góc AHM=góc DHM=45 độ(đpcm)

2 tháng 4 2017

A B C H I M E

1) Do \(\Delta BAE\)có \(AB=AE\Rightarrow\Delta BAE\)cân vuông tại A

Mà \(AM\)là đường phân giác của \(\Delta BAE\)(hay\(\Delta ABC\))

\(\Rightarrow AM\)đồng thời là đường cao của \(\Delta BAE\Rightarrow\widehat{AMB}=\widehat{AME}=90^0\)

Ta có: \(\widehat{BAM}=\widehat{EAM}=\frac{\widehat{BAE}}{2}=45^0\left(1\right)\).Mà \(\Delta BAE\)vuông cân tại A\(\Rightarrow\widehat{ABM}=\widehat{AEM}=\frac{180^0-\widehat{BAE}}{2}=45^0\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\Delta ABM\)vuông cân (đpcm)

2) Vì \(\Delta ABC\)có \(\widehat{BAC}=90^0\Rightarrow\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}=90^0\left(3\right)\)

Vì H là đường cao của \(\Delta ABC\Rightarrow\widehat{AHC}=90^0\Rightarrow\widehat{HAC}+\widehat{ACH}=180^0-\widehat{AHC}=90^0\)(Hay \(\widehat{HAC}+\widehat{ACB}=90^0\))\(\left(4\right)\)

Từ (3) và (4)\(\Rightarrow\widehat{ABC}=\widehat{HAC}=90^0-\widehat{ACB}\)(Hay \(\widehat{ABH}=\widehat{IAE}\))

Xét \(\Delta ABH\)\(\Delta EAI\)có:\(\hept{\begin{cases}\widehat{AHB}=\widehat{EIA}=90^0\\AB=AE\\\widehat{ABH}=\widehat{EAI}\end{cases}}\Rightarrow\Delta ABH=\Delta EAI\)(cạnh huyền góc nhọn)

\(\Rightarrow IE=AH\)(Đpcm)

                  

5 tháng 4 2019

kẻ IH vuông góc với AH thì H bạn đã cho đâu

23 tháng 12 2023

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

=>DA=DE

=>D nằm trên đường trung trực của AE(1)

ta có: BA=BE

=>B nằm trên trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

=>BD\(\perp\)AE tại trung điểm của AE

c: Ta có: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

Ta có: AH\(\perp\)BC

DE\(\perp\)BC

Do đó: AH//DE

d: Ta có: \(\widehat{EDC}+\widehat{ACB}=90^0\)(ΔEDC vuông tại E)

\(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)

Do đó: \(\widehat{EDC}=\widehat{ABC}\)

e: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDAK=ΔDEC

=>AK=EC và DK=DC

Ta có: BA+AK=BK

BE+EC=BC

mà BA=BE và AK=EC

nên BK=BC

=>B nằm trên đường trung trực của KC(3)

Ta có: DK=DC

=>D nằm trên đường trung trực của KC(4)

Ta có: MK=MC

=>M nằm trên đường trung trực của KC(5)

Từ (3),(4),(5) suy ra B,D,M thẳng hàng

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

a) Ta có: AD=AB+BD(B nằm giữa A và D)

AC=AE+EC(E nằm giữa A và C)

mà AB=AE(gt)

và BD=CE(gt)

nên AD=AC

Xét ΔADC có AD=AC(cmt)

nên ΔADC cân tại A(Định nghĩa tam giác cân)

b) Xét ΔABE có AB=AE(gt)

nên ΔABE cân tại A(Định nghĩa tam giác cân)

Ta có: ΔABE cân tại A(cmt)

nên \(\widehat{ABE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABE cân tại A)(1)

Ta có: ΔADC cân tại A(cmt)

nên \(\widehat{ADC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ABE}=\widehat{ADC}\)

mà \(\widehat{ABE}\) và \(\widehat{ADC}\) là hai góc ở vị trí đồng vị

nên BE//DC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: BE//DC(cmt)

BE\(\perp\)AK(gt)

Do đó: AK\(\perp\)DC(Định lí 2 từ vuông góc tới song song)

Ta có: ΔADC cân tại A(cmt)

mà AK là đường cao ứng với cạnh đáy DC(cmt)

nên AK là đường trung trực của DC(Định lí tam giác cân)(Đpcm)

23 tháng 1 2022

a) Ta có: AD=AB+BD(B nằm giữa A và D)

AC=AE+EC(E nằm giữa A và C)

mà AB=AE(gt)

và BD=CE(gt)

nên AD=AC

Xét ΔADC có AD=AC(cmt)

nên ΔADC cân tại A(Định nghĩa tam giác cân)

b) Xét ΔABE có AB=AE(gt)

nên ΔABE cân tại A(Định nghĩa tam giác cân)

Ta có: ΔABE cân tại A(cmt)

nên ˆABE=1800−ˆA2ABE^=1800−A^2(Số đo của một góc ở đáy trong ΔABE cân tại A)(1)

Ta có: ΔADC cân tại A(cmt)

nên ˆADC=1800−ˆA2ADC^=1800−A^2(Số đo của một góc ở đáy trong ΔADC cân tại A)(2)

Từ (1) và (2) suy ra ˆABE=ˆADCABE^=ADC^

mà ˆABEABE^ và ˆADCADC^ là hai góc ở vị trí đồng vị

nên BE//DC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: BE//DC(cmt)

BE⊥⊥AK(gt)

Do đó: AK⊥⊥DC(Định lí 2 từ vuông góc tới song song)

Ta có: ΔADC cân tại A(cmt)

mà AK là đường cao ứng với cạnh đáy DC(cmt)

nên AK là đường trung trực của DC(Định lí tam giác cân)